关于min_after_dequeue 的理解

本文深入解析tf.train.shuffle_batch中的shuffle与min_after_dequeue参数,阐述其在数据混洗中的作用与设置技巧,帮助读者理解如何有效提升数据集混洗效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

关于tf.train.shuffle_batch 中的参数 shuffle、min_after_dequeue

shuffle的作用在于指定是否需要随机打乱样本的顺序,一般作用于训练阶段,提高鲁棒性。 
1、当shuffle = false时,每次dequeue是从队列中按顺序取数据,遵从先入先出的原则 
2、当shuffle = true时,每次从队列中dequeue取数据时,不再按顺序,而是随机的,所以打乱了样本的原有顺序。

shuffle还要配合参数min_after_dequeue使用才能发挥作用。 
这个参数min_after_dequeue的意思是队列中,做dequeue(取数据)的操作后,queue runner线程要保证队列中至少剩下min_after_dequeue个数据。 
如果min_after_dequeue设置的过少,则即使shuffle为true,也达不到好的混合效果。

这个地方可能不太好理解,我尝试解释一下吧,但可能解释的不太好。 
假设你有一个队列,现在里面有m个数据,你想要每次随机从队列中取n个数据,则代表先混合了m个数据,再从中取走n个。 
当第一次取走n个后,队列就变为m-n个数据; 
当你下次再想要取n个时,假设队列在此期间插进来了k个数据,则现在的队列中有 
(m-n+k)个数据,则此时会从混合的(m-n+k)个数据中随机取走n个,。如果队列填充的速度比较慢,k就比较小,那你取出来的n个数据只是与周围很小的一部分(m-n+k)个数据进行了混合。

因为我们的目的肯定是想尽最大可能的混合数据,因此设置min_after_dequeue,可以保证每次dequeue后都有足够量的数据填充尽队列,保证下次dequeue时可以很充分的混合数据。

但是min_after_dequeue也不能设置的太大,这样会导致队列填充的时间变长,尤其是在最初的装载阶段,会花费比较长的时间。
 
原文:https://blog.youkuaiyun.com/masa_fish/article/details/52624459 
 

capacity是队列的长度
min_after_dequeue是出队后,队列至少剩下min_after_dequeue个数据
假设现在有个test.tfrecord文件,里面按从小到大顺序存放整数0~100
1. tf.train.batch是按顺序读取数据,队列中的数据始终是一个有序的队列,
比如队列的capacity=20,开始队列内容为0,1,..,19=>读取10条记录后,队列剩下10,11,..,19,然后又补充10条变成=>10,11,...,29,
队头一直按顺序补充,队尾一直按顺序出队,到了第100条记录后,又重头开始补充0,1,2...


2. tf.train.shuffle_batch是将队列中数据打乱后,再读取出来,因此队列中剩下的数据也是乱序的,队头也是一直在补充(我猜也是按顺序补充),
比如batch_size=5,capacity=10,min_after_dequeue=5,
初始是有序的0,1,..,9(10条记录),
然后打乱8,2,6,4,3,7,9,2,0,1(10条记录),
队尾取出5条,剩下7,9,2,0,1(5条记录),
然后又按顺序补充进来,变成7,9,2,0,1,10,11,12,13,14(10条记录),
再打乱13,10,2,7,0,12...1(10条记录),
再出队...

capacity可以看成是局部数据的范围,读取的数据是基于这个范围的,

在这个范围内,min_after_dequeue越大,数据越乱

原文:https://blog.youkuaiyun.com/ying86615791/article/details/73864381 
 

解释代码内容: def run_backend(cfg, model, states, keyframes, K): set_global_config(cfg) device = keyframes.device factor_graph = FactorGraph(model, keyframes, K, device) retrieval_database = load_retriever(model) mode = states.get_mode() while mode is not Mode.TERMINATED: mode = states.get_mode() if mode == Mode.INIT or states.is_paused(): time.sleep(0.01) continue if mode == Mode.RELOC: frame = states.get_frame() success = relocalization(frame, keyframes, factor_graph, retrieval_database) if success: states.set_mode(Mode.TRACKING) states.dequeue_reloc() continue idx = -1 with states.lock: if len(states.global_optimizer_tasks) > 0: idx = states.global_optimizer_tasks[0] if idx == -1: time.sleep(0.01) continue # Graph Construction kf_idx = [] # k to previous consecutive keyframes n_consec = 1 for j in range(min(n_consec, idx)): kf_idx.append(idx - 1 - j) frame = keyframes[idx] retrieval_inds = retrieval_database.update( frame, add_after_query=True, k=config["retrieval"]["k"], min_thresh=config["retrieval"]["min_thresh"], ) kf_idx += retrieval_inds lc_inds = set(retrieval_inds) lc_inds.discard(idx - 1) if len(lc_inds) > 0: print("Database retrieval", idx, ": ", lc_inds) kf_idx = set(kf_idx) # Remove duplicates by using set kf_idx.discard(idx) # Remove current kf idx if included kf_idx = list(kf_idx) # convert to list frame_idx = [idx] * len(kf_idx) if kf_idx: factor_graph.add_factors( kf_idx, frame_idx, config["local_opt"]["min_match_frac"] ) with states.lock: states.edges_ii[:] = factor_graph.ii.cpu().tolist() states.edges_jj[:] = factor_graph.jj.cpu().tolist() if config["use_calib"]: factor_graph.solve_GN_calib() else: factor_graph.solve_GN_rays() with states.lock: if len(states.global_optimizer_tasks) > 0: idx = states.global_optimizer_tasks.pop(0)
最新发布
03-17
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值