参考文档
https://www.cnblogs.com/wen123456/p/14373713.html
数据包传输:应用层-内核-硬件_应用层读取gadget 数据-优快云博客
usb设备控制器之uvc数据传输底层实现_usb uvc请求命令-优快云博客
ioctl—>/drivers/usb/gadget/function/uvc_v4l2.c:v4l2_file_operations uvc_v4l2_fops—>video_ioctl2(该函数在/drivers/media/v4l2-core/v4l2-ioctl.c)—>video_usercopy—>__video_do_ioctl—>v4l2_ioctls(这是个数组,找到对应的cmd执行对应的ioctl)—>v4l_qbuf(入队ioctl)—>ops->vidioc_qbuf(file, fh, p)—>uvc_v4l2_qbuf—>uvcg_video_pump—>uvcg_video_ep_queue—>usb_ep_queue—>ep->ops->queue(ep, req, gfp_flags)—>dwc3_gadget_ep_queue—>__dwc3_gadget_ep_queue(相关dma数据拷贝操作之后调用后面函数使能发送)—>__dwc3_gadget_kick_transfer
原文链接:https://blog.youkuaiyun.com/qq_18804879/article/details/118333486
static int
uvc_v4l2_qbuf(struct file *file, void *fh, struct v4l2_buffer *b)
{
struct video_device *vdev = video_devdata(file);
struct uvc_device *uvc = video_get_drvdata(vdev);
struct uvc_video *video = &uvc->video;
int ret;
ret = uvcg_queue_buffer(&video->queue, b);
if (ret < 0)
return ret;
return uvcg_video_pump(video);
}
/*
* uvcg_video_pump - Pump video data into the USB requests
*
* This function fills the available USB requests (listed in req_free) with
* video data from the queued buffers.
*/
int uvcg_video_pump(struct uvc_video *video)
{
struct uvc_video_queue *queue = &video->queue;
struct usb_request *req;
struct uvc_buffer *buf;
unsigned long flags;
int ret;
/* FIXME TODO Race between uvcg_video_pump and requests completion
* handler ???
*/
while (1) {
/* Retrieve the first available USB request, protected by the
* request lock.
*/
spin_lock_irqsave(&video->req_lock, flags);
if (list_empty(&video->req_free)) {
spin_unlock_irqrestore(&video->req_lock, flags);
return 0;
}
req = list_first_entry(&video->req_free, struct usb_request,
list);
list_del(&req->list);
spin_unlock_irqrestore(&video->req_lock, flags);
/* Retrieve the first available video buffer and fill the
* request, protected by the video queue irqlock.
*/
spin_lock_irqsave(&queue->irqlock, flags);
buf = uvcg_queue_head(queue);
if (buf == NULL) {
spin_unlock_irqrestore(&queue->irqlock, flags);
break;
}
video->encode(req, video, buf);
/* Queue the USB request */
ret = uvcg_video_ep_queue(video, req);
spin_unlock_irqrestore(&queue->irqlock, flags);
if (ret < 0) {
uvcg_queue_cancel(queue, 0);
break;
}
}
spin_lock_irqsave(&video->req_lock, flags);
list_add_tail(&req->list, &video->req_free);
spin_unlock_irqrestore(&video->req_lock, flags);
return 0;
}
int usb_ep_queue(struct usb_ep *ep,
struct usb_request *req, gfp_t gfp_flags)
{
int ret = 0;
if (WARN_ON_ONCE(!ep->enabled && ep->address)) {
ret = -ESHUTDOWN;
goto out;
}
//调用dwc3_gadget_ep_queue
ret = ep->ops->queue(ep, req, gfp_flags);
out:
trace_usb_ep_queue(ep, req, ret);
return ret;
}
EXPORT_SYMBOL_GPL(usb_ep_queue);
static int dwc3_gadget_ep_queue(struct usb_ep *ep, struct usb_request *request,
gfp_t gfp_flags)
{
struct dwc3_request *req = to_dwc3_request(request);
struct dwc3_ep *dep = to_dwc3_ep(ep);
struct dwc3 *dwc = dep->dwc;
unsigned long flags;
int ret;
if (dwc3_gadget_is_suspended(dwc))
return -EAGAIN;
spin_lock_irqsave(&dwc->lock, flags);
ret = __dwc3_gadget_ep_queue(dep, req);
spin_unlock_irqrestore(&dwc->lock, flags);
return ret;
}
2.6.1.2.向非端点0提交USB请求
usb_ep_queue向非端点0提交USB请求的过程如下图所示,最终通过__dwc3_gadget_ep_queue函数提交。下面分析一下向非端点0提交USB请求的主要工作内容:
设置USB请求的actual、status、direction、epnum和length等字段,对于输出端点,length必须是MaxPacketSize的整数倍。
对USB请求的缓冲区进行流式DMA映射。USB请求缓冲区是Function驱动使用kmalloc等函数分配,DMA不能直接使用,需要进行DMA映射,具体的映射过程在2.7小结介绍。
将提交的USB请求先放到pending_list链表。
调用__dwc3_gadget_kick_transfer函数驱动USB设备控制器发送USB请求。这里有几个特殊情况,图里面没有画出,下面简要说明一下。
bulk和control传输,则直接调用__dwc3_gadget_kick_transfer发送USB请求。
int和isoc传输,需要处理XferNotReady、XferInProgress、Stream Capable Bulk Endpoints等情况。
调用dwc3_prepare_trbs函数遍历pending_list将TRB和request绑定,执行完后pending_list链表上的request都会被放到started_list链表上。该函数会根据DMA缓冲区的使用形式做不同的处理,若DMA支持Scatter-gather,则调用dwc3_prepare_one_trb_sg函数,否则调用dwc3_prepare_one_trb_linear函数,最终都是通过dwc3_prepare_one_trb将TRB和request绑定。
从started_list链表中获取一个USB请求。若端点空闲,将其绑定的TRB DMA地址设置到param0和param1寄存器中,命令设置为DWC3_DEPCMD_STARTTRANSFER,开始传输。若端点忙碌,则将命令设置为DWC3_DEPCMD_UPDATETRANSFER,只更新传输,则不发送本次的USB请求。端点是否忙碌通过DWC3_EP_BUSY标志判断。
若端点空闲,则获取端点资源索引,用于辨别是那一次传输。
原文链接:https://blog.youkuaiyun.com/u011037593/article/details/123467147
只需要知道一点 usb设备控制器处理的是一个trb结构体指针,控制器自己分析里面数据启动传输

在ioctl qbuf的时候调用到__dwc3_gadget_ep_queue—>usb_gadget_map_request
int usb_gadget_map_request_by_dev(struct device *dev,
struct usb_request *req, int is_in)
{
if (req->length == 0)
return 0;
if (req->num_sgs) {
int mapped;
mapped = dma_map_sg(dev, req->sg, req->num_sgs,
is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
if (mapped == 0) {
dev_err(dev, "failed to map SGs\n");
return -EFAULT;
}
req->num_mapped_sgs = mapped;
} else {
req->dma = dma_map_single(dev, req->buf, req->length,
is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);在这映射到dma内存种
if (dma_mapping_error(dev, req->dma)) {
dev_err(dev, "failed to map buffer\n");
return -EFAULT;
}
}
return 0;
}
__dwc3_gadget_ep_queue—>__dwc3_gadget_kick_transfer—>dwc3_prepare_trbs—>dwc3_prepare_one_trb_linear—>dwc3_prepare_one_trb
启动传输
static int __dwc3_gadget_kick_transfer(struct dwc3_ep *dep)
{
struct dwc3_gadget_ep_cmd_params params;
struct dwc3_request *req;
struct dwc3