Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great"
:
great / \ gr eat / \ / \ g r e at / \ a t
To scramble the string, we may choose any non-leaf node and swap its two children.
For example, if we choose the node "gr"
and swap its two children, it produces a scrambled string "rgeat"
.
rgeat / \ rg eat / \ / \ r g e at / \ a t
We say that "rgeat"
is a scrambled string of "great"
.
Similarly, if we continue to swap the children of nodes "eat"
and "at"
, it produces a scrambled string "rgtae"
.
rgtae / \ rg tae / \ / \ r g ta e / \ t a
We say that "rgtae"
is a scrambled string of "great"
.
Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.
Subscribe to see which companies asked this question
思路分析:
由于一个字符串有很多种二叉表示法,貌似很难判断两个字符串是否可以做这样的变换。
对付复杂问题的方法是从简单的特例来思考,从而找出规律。
先考察简单情况:
字符串长度为1:很明显,两个字符串必须完全相同才可以。
字符串长度为2:当s1="ab", s2只有"ab"或者"ba"才可以。
对于任意长度的字符串,我们可以把字符串s1分为a1,b1两个部分,s2分为a2,b2两个部分,满足((a1~a2) && (b1~b2))或者 ((a1~b2) && (a1~b2))
如此,我们找到了解决问题的思路。首先我们尝试用递归来写。
/*
*/
#include "stdafx.h"
#include <iostream>
#include <algorithm>
using namespace std;
class Solution_087_ScrambleString
{
public:
bool isScramble(string s1, string s2)
{
int l1 = s1.length();
int l2 = s2.length();
if (l1 != l2)
{
return false;
}
if (l1 == l2)
{
return true;
}
string st1 = s1, st2 = s2;
sort(st1.begin(), st1.end());
sort(st2.begin(), st2.end());
for (int i = 0; i < l1; ++i)
{
if (st1[i] != st2[i])
{
return false;
}
}
string s11, s12, s21, s22;
bool res = false;
for (int i = 1; i < l1 && !res; i++)
{
s11 = s1.substr(0, i);
s12 = s1.substr(i, l1 - i);
s21 = s2.substr(0, i);
s22 = s2.substr(i, l1 - i);
res = isScramble(s11, s21) && isScramble(s12, s22);
if (!res)
{
s21 = s2.substr(0, l1 - i);
s22 = s2.substr(l1 - i, i);
res = isScramble(s11, s22) && isScramble(s12, s21);
}
}
return res;
}
};