Leetcode--Scramble String

本文探讨了一种特殊的字符串匹配问题,即判断一个字符串是否可以通过对其子串进行互换位置得到另一个字符串。通过递归和动态规划两种方法实现,旨在解决字符串的乱序匹配问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Topic: Hard


Question:

Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.

Below is one possible representation of s1 = "great":

    great
   /    \
  gr    eat
 / \    /  \
g   r  e   at
           / \
          a   t

To scramble the string, we may choose any non-leaf node and swap its two children.

For example, if we choose the node "gr" and swap its two children, it produces a scrambled string "rgeat".

    rgeat
   /    \
  rg    eat
 / \    /  \
r   g  e   at
           / \
          a   t

We say that "rgeat" is a scrambled string of "great".

Similarly, if we continue to swap the children of nodes "eat" and "at", it produces a scrambled string "rgtae".

    rgtae
   /    \
  rg    tae
 / \    /  \
r   g  ta  e
       / \
      t   a

We say that "rgtae" is a scrambled string of "great".

Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.

» Solve this problem


Method:

1.Recursive--base case is two strings length is equal or not and whether the only char in these two string are the same. Once the length is bigger than 1, traverse the string which-ever, OK, find out the the substring with length i for two sides and make a letter comparison to see do they have the same letters in the string? If yes, go to next recursion to see whether the two sides of each string still have same substrings at the specific position.

2. DP-- 3 dimensional DP, oh my! But remember to ask this question: what do we remember? In this case, we remember the already compared substrings' situations. To be continued...


Code:

public class Solution {
    public boolean isScramble(String s2, String s1) {
        // Start typing your Java solution below
        // DO NOT write main() function
        if(s1.length() != s2.length()) return false;
        else if(s1.length() == 1) return s1.charAt(0)==s2.charAt(0);
        else{
            for(int i=1; i<s2.length(); i++){
                String a1 = s1.substring(0, i);
                String a2 = s1.substring(i);
                String b1 = s2.substring(0, i);
                String b2 = s2.substring(i);
                
                if(checkLetters(a1, b1)){
                    if(isScramble(a1, b1) && isScramble(a2, b2)){
                        return true;
                    }
                }
                
                b1 = s2.substring(0, a2.length());
                b2 = s2.substring(a2.length());
                if(checkLetters(a1, b2)){
                    if(isScramble(a1, b2) && isScramble(a2, b1)){
                        return true;
                    }
                }
            }
        }
        return false;
    }
    
    
    private boolean checkLetters(String s1, String s2){
        int[] set = new int[256];
        for(int i=0; i<s1.length(); i++)
            set[s1.charAt(i)-'0']++;
        
        for(int i=0; i<s2.length(); i++){
            if(set[s2.charAt(i)-'0']-- == 0)
                return false;
        }
        
        return true;
    }
}


Code for DP:

boolean isScramble(String s1, String s2) {
    if(s1.equals(s2))
        return true;
    boolean[][][] scrambled = new boolean[s1.length()][s2.length()][s1.length() + 1];
    for(int i = 0; i < s1.length(); i++)
        for(int j = 0; j < s2.length(); j++){
            scrambled[i][j][0] = true; 
            scrambled[i][j][1] = s1.charAt(i) == s2.charAt(j);
        }

    for(int i = s1.length() - 1; i >= 0 ; i--)
        for(int j = s2.length() - 1; j >= 0; j--)
            for(int n = 2; n <= Math.min(s1.length() - i, s2.length() - j); n ++)
                for(int m = 1; m < n; m++){
                    scrambled[i][j][n] |= scrambled[i][j][m] && scrambled[i + m][j + m][n - m] || scrambled[i][j + n - m][m] && scrambled[i + m][j][n - m];
                    if(scrambled[i][j][n])  break;
                }
    return scrambled[0][0][s1.length()]; 
}



Summary:

太难,不正常的一道面试题,DP运用了三维布尔数组存放已经比较过的scramble substring,解法依旧在研究中。

内容概要:本文详细探讨了基于MATLAB/SIMULINK的多载波无线通信系统仿真及性能分析,重点研究了以OFDM为代表的多载波技术。文章首先介绍了OFDM的基本原理和系统组成,随后通过仿真平台分析了不同调制方式的抗干扰性能、信道估计算法对系统性能的影响以及同步技术的实现与分析。文中提供了详细的MATLAB代码实现,涵盖OFDM系统的基本仿真、信道估计算法比较、同步算法实现和不同调制方式的性能比较。此外,还讨论了信道特征、OFDM关键技术、信道估计、同步技术和系统级仿真架构,并提出了未来的改进方向,如深度学习增强、混合波形设计和硬件加速方案。; 适合人群:具备无线通信基础知识,尤其是对OFDM技术有一定了解的研究人员和技术人员;从事无线通信系统设计与开发的工程师;高校通信工程专业的高年级本科生和研究生。; 使用场景及目标:①理解OFDM系统的工作原理及其在多径信道环境下的性能表现;②掌握MATLAB/SIMULINK在无线通信系统仿真中的应用;③评估不同调制方式、信道估计算法和同步算法的优劣;④为实际OFDM系统的设计和优化提供理论依据和技术支持。; 其他说明:本文不仅提供了详细的理论分析,还附带了大量的MATLAB代码示例,便于读者动手实践。建议读者在学习过程中结合代码进行调试和实验,以加深对OFDM技术的理解。此外,文中还涉及了一些最新的研究方向和技术趋势,如AI增强和毫米波通信,为读者提供了更广阔的视野。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值