package Level2;
/**
* Unique Paths
*
* A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
*
*/
public class S62 {
public static void main(String[] args) {
}
public int uniquePaths(int m, int n) {
// DP数组用来存放到每一个格子时的路径数目
int[][] cnt = new int[m][n];
cnt[0][0] = 1;
// 第一列的格子只有一种到达方式(向下)
for(int i=0; i<m; i++){
cnt[i][0] = 1;
}
// 第一行的格子只有一种到达方式(向右)
for(int i=0; i<n; i++){
cnt[0][i] = 1;
}
for(int i=1; i<m; i++){
for(int j=1; j<n; j++){
cnt[i][j] = cnt[i-1][j] + cnt[i][j-1];
}
}
return cnt[m-1][n-1];
}
}
public class Solution {
public int uniquePaths(int m, int n) {
int[][] ways = new int[m][n];
ways[0][0] = 1;
for(int i=0; i<m; i++){
ways[i][0] = 1;
}
for(int j=0; j<n; j++){
ways[0][j] = 1;
}
for(int i=1; i<m; i++){
for(int j=1; j<n; j++){
ways[i][j] = ways[i-1][j] + ways[i][j-1];
}
}
return ways[m-1][n-1];
}
}