hdu 5538 House Building 【矩阵表面积】

House Building

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 1808    Accepted Submission(s): 1138


Problem Description
Have you ever played the video game Minecraft? This game has been one of the world's most popular game in recent years. The world of Minecraft is made up of lots of  1×1×1  blocks in a 3D map. Blocks are the basic units of structure in Minecraft, there are many types of blocks. A block can either be a clay, dirt, water, wood, air, ... or even a building material such as brick or concrete in this game.


Figure 1: A typical world in Minecraft.


Nyanko-san is one of the diehard fans of the game, what he loves most is to build monumental houses in the world of the game. One day, he found a flat ground in some place. Yes, a super flat ground without any roughness, it's really a lovely place to build houses on it. Nyanko-san decided to build on a  n×m  big flat ground, so he drew a blueprint of his house, and found some building materials to build.

While everything seems goes smoothly, something wrong happened. Nyanko-san found out he had forgotten to prepare glass elements, which is a important element to decorate his house. Now Nyanko-san gives you his blueprint of house and asking for your help. Your job is quite easy, collecting a sufficient number of the glass unit for building his house. But first, you have to calculate how many units of glass should be collected.

There are  n  rows and  m  columns on the ground, an intersection of a row and a column is a  1×1  square,and a square is a valid place for players to put blocks on. And to simplify this problem, Nynako-san's blueprint can be represented as an integer array  ci,j(1in,1jm) . Which  ci,j  indicates the height of his house on the square of  i -th row and  j -th column. The number of glass unit that you need to collect is equal to the surface area of Nyanko-san's house(exclude the face adjacent to the ground).
 

Input
The first line contains an integer  T  indicating the total number of test cases.
First line of each test case is a line with two integers  n,m .
The  n  lines that follow describe the array of Nyanko-san's blueprint, the  i -th of these lines has  m  integers  ci,1,ci,2,...,ci,m , separated by a single space.

1T50
1n,m50
0ci,j1000
 

Output
For each test case, please output the number of glass units you need to collect to meet Nyanko-san's requirement in one line.
 

Sample Input
  
2 3 3 1 0 0 3 1 2 1 1 0 3 3 1 0 1 0 0 0 1 0 1
 

Sample Output
  
30 20
Figure 2: A top view and side view image for sample test case 1.
 

Source

题意:读入n行m列的矩阵,矩阵中存的是i行j列的房子的高度,每个房子是由1*1的砖块构成,问房子的表面积是多少,不包括底面。
思路:因为每个砖块有6个面,所以我们先初始房子总的表面积为总的砖块数*6。
有以下几种情况需要减去表面积:
1:房子与房子之间相邻时,减去它们公共的面的面积。
2:每个位置有房子时,减去底面面积。
3:每个房子上砖块与砖块之间相邻时,减去相邻砖块之间的两个面。


 
#include<stdio.h>
#include<iostream>
#include<algorithm>
using namespace std; 
#define N 55
int map[N][N],Next[2][4]={0,1,1,0,-1,0,0,-1};
int main()
{
    int t,m,n,i,j,k,sum,ans,x,y;
    scanf("%d",&t);
    while(t --)
    {
        scanf("%d%d",&n,&m);
        sum = ans=0;
        for(i = 1; i <= n; i ++)
        {
            for(j = 1; j <= m; j ++)
            {
                scanf("%d",&map[i][j]);
                sum += map[i][j];//计算总的砖块数 
                if(map[i][j]> 0)//ans记录底面面积总数 
                    ans ++;
            }
        }
        sum *= 6;//初始化总的表面积 
        for(i = 1; i <= n; i ++)
        {
            for(j = 1; j <= m; j ++)
            {
                if(map[i][j] > 0)//房子高度大于0时 
                    sum = sum - (map[i][j]-1)*2;//每个房子上下相邻的砖块有(高度map[i][j]-1)块 
                for(k = 0; k < 4; k ++)//搜索4个方向 
                {
                    x = Next[0][k] + i;
                    y = Next[1][k] + j;
                    if(x < 1||y < 1||x>n||y>m)
                        continue;
                    sum -= min(map[x][y],map[i][j]);//减去两个房子相邻的公共部分面积 
                }
            }
        }
        printf("%d\n",sum-ans);//总的表面积减去底面面积 
    }
    return 0;
}





 
#include<stdio.h>
#include<iostream>
#include<algorithm>
using namespace std; 
#define N 55
int map[N][N],Next[2][4]={0,1,1,0,-1,0,0,-1};
int main()
{
    int t,m,n,i,j,k,sum,ans,x,y;
    scanf("%d",&t);
    while(t --)
    {
        scanf("%d%d",&n,&m);
        sum = ans=0;
        for(i = 1; i <= n; i ++)
        {
            for(j = 1; j <= m; j ++)
            {
                scanf("%d",&map[i][j]);
                sum += map[i][j];//计算总的砖块数 
                if(map[i][j]> 0)//ans记录底面面积总数 
                    ans ++;
            }
        }
        sum *= 6;//初始化总的表面积 
        for(i = 1; i <= n; i ++)
        {
            for(j = 1; j <= m; j ++)
            {
                if(map[i][j] > 0)//房子高度大于0时 
                    sum = sum - (map[i][j]-1)*2;//每个房子上下相邻的砖块有(高度map[i][j]-1)块 
                for(k = 0; k < 4; k ++)//搜索4个方向 
                {
                    x = Next[0][k] + i;
                    y = Next[1][k] + j;
                    if(x < 1||y < 1||x>n||y>m)
                        continue;
                    sum -= min(map[x][y],map[i][j]);//减去两个房子相邻的公共部分面积 
                }
            }
        }
        printf("%d\n",sum-ans);//总的表面积减去底面面积 
    }
    return 0;
}

### HDU 2544 题目分析 HDU 2544 是关于最短路径的经典问题,可以通过多种方法解决,其中包括基于邻接矩阵的 Floyd-Warshall 算法。以下是针对该问题的具体解答。 --- #### 基于邻接矩阵的 Floyd-Warshall 实现 Floyd-Warshall 算法是一种动态规划算法,适用于计算任意两点之间的最短路径。它的时间复杂度为 \( O(V^3) \),其中 \( V \) 表示节点的数量。对于本题中的数据规模 (\( N \leq 100 \)),此算法完全适用。 下面是具体的实现方式: ```cpp #include <iostream> #include <algorithm> using namespace std; const int INF = 0x3f3f3f3f; int dist[105][105]; int n, m; void floyd() { for (int k = 1; k <= n; ++k) { // 中间节点 for (int i = 1; i <= n; ++i) { // 起始节点 for (int j = 1; j <= n; ++j) { // 结束节点 if (dist[i][k] != INF && dist[k][j] != INF) { dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j]); } } } } } int main() { while (cin >> n >> m && (n || m)) { // 初始化邻接矩阵 for (int i = 1; i <= n; ++i) { for (int j = 1; j <= n; ++j) { if (i == j) dist[i][j] = 0; else dist[i][j] = INF; } } // 输入边的信息并更新邻接矩阵 for (int i = 0; i < m; ++i) { int u, v, w; cin >> u >> v >> w; dist[u][v] = min(dist[u][v], w); dist[v][u] = min(dist[v][u], w); // 如果是有向图,则去掉这一行 } // 执行 Floyd-Warshall 算法 floyd(); // 输出起点到终点的最短距离 cout << (dist[1][n] >= INF ? -1 : dist[1][n]) << endl; } return 0; } ``` --- #### 关键点解析 1. **邻接矩阵初始化** 使用二维数组 `dist` 存储每一对节点间的最小距离。初始状态下,设所有节点对的距离为无穷大 (`INF`),而同一节点自身的距离为零[^4]。 2. **输入处理** 对于每条边 `(u, v)` 和权重 `w`,将其存储至邻接矩阵中,并取较小值以防止重边的影响[^4]。 3. **核心逻辑** Floyd-Warshall 的核心在于三重循环:依次尝试通过中间节点优化其他两节点间的距离关系。具体而言,若从节点 \( i \) 到 \( j \) 可经由 \( k \) 达成更优解,则更新对应位置的值[^4]。 4. **边界条件** 若最终得到的结果仍为无穷大(即无法连通),则返回 `-1`;否则输出实际距离[^4]。 --- #### 性能评估 由于题目限定 \( N \leq 100 \),因此 \( O(N^3) \) 的时间复杂度完全可以接受。此外,空间需求也较低,适合此类场景下的应用。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值