hdu 5366 The mook jong 【dp】

本文探讨了在一系列砖上放置物品的问题,确保物品间至少隔开两块砖,使用递推算法解决摆放方案数量计算问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The mook jong

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1065    Accepted Submission(s): 702


Problem Description
![](../../data/images/C613-1001-1.jpg)

ZJiaQ want to become a strong man, so he decided to play the mook jong。ZJiaQ want to put some mook jongs in his backyard. His backyard consist of n bricks that is 1*1,so it is 1*n。ZJiaQ want to put a mook jong in a brick. because of the hands of the mook jong, the distance of two mook jongs should be equal or more than 2 bricks. Now ZJiaQ want to know how many ways can ZJiaQ put mook jongs legally(at least one mook jong).
 

Input
There ar multiply cases. For each case, there is a single integer n( 1 < = n < = 60)
 

Output
Print the ways in a single line for each case.
 

Sample Input
1 2 3 4 5 6
 

Sample Output
1 2 3 5 8 12
 
题意:有n块砖,在砖上放东西,使东西间的间隔小于等于两块砖,问有多少种放法,最少放一样东西。
思路:放第i块砖有三种放法:
第一种:放东西且和上一个砖间隔2块。不论第i-3块砖放不放东西,这种情况都继承i-3块砖的方法总数。
第二种:不放东西。这种情况继承i-1块砖的方法总数。
第三种:放东西且前面i-1块砖都不放东西。这种情况方法+1。 

 

#include<stdio.h>

int main()
{
    int n,i;
    long long dp[65];//输出60时会超int范围  
    dp[0] = 0;
    dp[1] = 1;
    dp[2] = 2;
    for(i = 3; i <= 60; i ++)
        dp[i] = dp[i-1] + dp[i-3]+1;//状态转移方程 
    while(scanf("%d",&n)!=EOF)
    {
        printf("%lld\n",dp[n]);
    }
    return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值