HDU 3117 Fibonacci Numbers(斐波那契前后四位,打表+取对+矩阵快速幂)

本文介绍了解决HDU3117斐波那契数问题的方法,通过取对和矩阵快速幂技巧求解指定斐波那契数的前四位和后四位数字。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

HDU 3117 Fibonacci Numbers(斐波那契前后四位,打表+取对+矩阵快速幂)

ACM

题目地址:HDU 3117 Fibonacci Numbers

题意: 
求第n个斐波那契数的前四位和后四位。 
不足8位直接输出。

分析: 
前四位有另外一题HDU 1568,用取对的方法来做的。 
后四位可以用矩阵快速幂,MOD设成10000就行了。

代码

/*
*  Author:      illuz <iilluzen[at]gmail.com>
*  Blog:        http://blog.youkuaiyun.com/hcbbt
*  File:        3117.cpp
*  Create Date: 2014-08-04 10:25:26
*  Descripton:   
*/

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
#define repf(i,a,b) for(int i=(a);i<=(b);i++)

typedef long long ll;

const int N = 41;
const int SIZE = 2;        // max size of the matrix
const int MOD = 10000;

ll n;
ll tab[N];
double ans;

struct Mat{
    int n;
    ll v[SIZE][SIZE];    // value of matrix

    Mat(int _n = SIZE) {
        n = _n;
        memset(v, 0, sizeof(v));
    }

    void init(ll _v) {
        repf (i, 0, n - 1)
            v[i][i] = _v;
    }

    void output() {
        repf (i, 0, n - 1) {
            repf (j, 0, n - 1)
                printf("%lld ", v[i][j]);
            puts("");
        }
        puts("");
    }
} a, b;

Mat operator * (Mat a, Mat b) {
    Mat c(a.n);
    repf (i, 0, a.n - 1) {
        repf (j, 0, a.n - 1) {
            c.v[i][j] = 0;
            repf (k, 0, a.n - 1) {
                c.v[i][j] += (a.v[i][k] * b.v[k][j]) % MOD;
                c.v[i][j] %= MOD;
            }
        }
    }
    return c;
}

Mat operator ^ (Mat a, ll k) {
    Mat c(a.n);
    c.init(1);
    while (k) {
        if (k&1) c = a * c;
        a = a * a;
        k >>= 1;
    }
    return c;
}

double fib(int x) {
    return -0.5 * log(5.0) / log(10.0) + ( (double)n) * log((sqrt(5.0) + 1) / 2) / log(10.0);
}

void table() {
    // table
    tab[0] = 0;
    tab[1] = 1;
    repf (i, 2, 40)
        tab[i] = tab[i - 1] + tab[i - 2];
}

void pre4(int n) {
    ans = fib(n);
    ans -= floor(ans);
    ans = pow(10.0, ans);
    while (ans < 1000)
        ans *= 10;
    printf("%d", (int)ans);
}

void last4(int n) { 
    a.init(0);
    a.v[0][0] = a.v[0][1] = a.v[1][0] = 1;

    b = a ^ (n - 1);
    printf("%04lld\n", b.v[0][0]);
}

int main() {
    table();
    while (~scanf("%lld", &n)) {
        if (n < 40) {
            printf("%lld\n", tab[n]);
            continue;
        }
        pre4(n);
        printf("...");
        last4(n);
    }
    return 0;
}


### 使用多种编程语言实现输出斐波那契数列的前四项 以下是几种常见编程语言实现输出斐波那契数列前四项的方法: #### C++ 实现 在C++中可以通过简单的循环来计算并打印斐波那契数列的前几项。 ```cpp #include <iostream> using namespace std; int main() { cout << "Fibonacci数列的前4项如下:" << endl; int a = 1, b = 1; // 初始化前两项 cout << a << " " << b << " "; // 打印前两项 for (int i = 1; i <= 2; ++i) { // 计算并打印后续两项 int nextTerm = a + b; cout << nextTerm << " "; a = b; b = nextTerm; } cout << endl; return 0; } ``` 此代码片段基于引用中的逻辑[^1],简化为仅输出前四项。 --- #### Python 实现 Python 提供了一种简洁的方式来生成斐波那契数列。通过列表推导或其他方法可轻松完成任务。 ```python def fibonacci_four_terms(): terms = [1, 1] # 初始两个值 for _ in range(2): # 添加接下来的两项 terms.append(terms[-1] + terms[-2]) return terms[:4] result = fibonacci_four_terms() print("Fibonacci数列的前4项:", result) ``` 上述代码利用了动态数组的概念,类似于引用中的描述[^2],但调整为了只生成四个数值。 --- #### Java 实现 Java 中可以借助 `ArrayList` 来存储和操作斐波那契序列。 ```java import java.util.ArrayList; public class FibonacciFourTerms { public static void main(String[] args) { ArrayList<Integer> fabList = new ArrayList<>(); fabList.add(1); fabList.add(1); for (int i = 2; i < 4; i++) { fabList.add(fabList.get(i - 1) + fabList.get(i - 2)); } System.out.println("Fibonacci数列的前4项:"); for (Integer num : fabList) { System.out.print(num + " "); } } } ``` 这段代码参考了 Java 的实现方式[^5],并对范围进行了修改以便适应当前需求。 --- #### C 实现 对于更基础的语言如C,则可以直接采用数组或者变量交换的方式处理。 ```c #include <stdio.h> void print_fibonacci_first_four() { int first = 1, second = 1; printf("%d %d ", first, second); // 输出前两项目 for(int i = 3; i <= 4; i++) { // 继续计算剩余部分直到第四项为止 int third = first + second; printf("%d ", third); first = second; second = third; } } int main(){ print_fibonacci_first_four(); return 0; } ``` 该版本遵循传统迭代模式构建结果集,并且保持简单明了结构设计思路来自其他例子[^3]^。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值