矩阵快速幂和几个应用

这篇博客介绍了如何使用矩阵快速幂解决斐波那契数列的计算问题,以及在HDU-5015和ZOJ-2974两个题目中的应用。矩阵快速幂通过计算矩阵的幂次来高效求解问题,例如在233矩阵中求解特定位置的值,以及多容器水倒入问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

模板:

#define maxn 1005
struct Matrix 
{
    int m[maxn][maxn];
}a,b,ans,res;
void init()
{
    for(int i = 1; i <= n; i ++)
    {
        for(int j = 1; j <= n; j ++)
        {
            if(i==j)
                a.m[i][j] = 1;
            else
                a.m[i][j] = 0;
        }
    }
}
Matrix mul(Matrix a,Matrix b)
{
    Matrix c;
    for(int i = 1; i <= n; i ++)
    {
        for(int j = 1; j <= n; j ++)
        {
            c.m[0][0] = 0;
            for(int k = 1; k <= n; k ++)
                c.m[i][j] += a.m[i][k]*b.m[k][j];
        }
    }
    return c;
}
Matrix q_pow(Matrix a,int b)
{
    res = a;
    while(b)
    {
        if(b&1)
            res = mul(res,a);
        a = mul(a,a);
        b >>= 1;
    }
    return res;
}

Fibonacci

In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

An alternative formula for the Fibonacci sequence is

.

Given an integer n, your goal is to compute the last 4 digits of Fn.

Input

The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.

Output

For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).

Sample Input

0
9
999999999
1000000000
-1

Sample Output

0

题意:求斐波那契数列的第n项

解析:利用矩阵快速幂,因为题意给出了

即求这个矩阵的n次幂,然后再输出矩阵的第一列第二个就行啦~

#include<iostream>
#include<cstring>
#include<algorithm>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值