模板:
#define maxn 1005
struct Matrix
{
int m[maxn][maxn];
}a,b,ans,res;
void init()
{
for(int i = 1; i <= n; i ++)
{
for(int j = 1; j <= n; j ++)
{
if(i==j)
a.m[i][j] = 1;
else
a.m[i][j] = 0;
}
}
}
Matrix mul(Matrix a,Matrix b)
{
Matrix c;
for(int i = 1; i <= n; i ++)
{
for(int j = 1; j <= n; j ++)
{
c.m[0][0] = 0;
for(int k = 1; k <= n; k ++)
c.m[i][j] += a.m[i][k]*b.m[k][j];
}
}
return c;
}
Matrix q_pow(Matrix a,int b)
{
res = a;
while(b)
{
if(b&1)
res = mul(res,a);
a = mul(a,a);
b >>= 1;
}
return res;
}
Fibonacci
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Given an integer n, your goal is to compute the last 4 digits of Fn.
Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.
Output
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).
Sample Input
0 9 999999999 1000000000 -1
Sample Output
0
题意:求斐波那契数列的第n项
解析:利用矩阵快速幂,因为题意给出了
即求这个矩阵的n次幂,然后再输出矩阵的第一列第二个就行啦~
#include<iostream>
#include<cstring>
#include<algorithm>