HDU 1757 A Simple Math Problem (矩阵快速幂)
ACM
题目地址:HDU 1757 A Simple Math Problem
题意:
If x < 10 f(x) = x.
If x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10);
问f(k)%m的值。
分析:
裸矩阵快速幂,式子都给你了,跟HDU 2604 Queuing (矩阵快速幂)一样,试着做看看吧。
代码:
/*
* Author: illuz <iilluzen[at]gmail.com>
* Blog: http://blog.youkuaiyun.com/hcbbt
* File: 1757.cpp
* Create Date: 2014-08-03 09:24:45
* Descripton: Matrix quick power
*/
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define repf(i,a,b) for(int i=(a);i<=(b);i++)
typedef long long ll;
const int N = 20;
const int SIZE = 20; // max size of the matrix
ll k, MOD;
struct Mat{
int n;
ll v[SIZE][SIZE]; // value of matrix
Mat(int _n = SIZE) {
n = _n;
memset(v, 0, sizeof(v));
}
void init(ll _v) {
repf (i, 0, n - 1)
v[i][i] = _v;
}
void output() {
repf (i, 0, n - 1) {
repf (j, 0, n - 1)
printf("%lld ", v[i][j]);
puts("");
}
puts("");
}
} a, b;
Mat operator * (Mat a, Mat b) {
Mat c(a.n);
repf (i, 0, a.n - 1) {
repf (j, 0, a.n - 1) {
c.v[i][j] = 0;
repf (k, 0, a.n - 1) {
c.v[i][j] += (a.v[i][k] * b.v[k][j]) % MOD;
c.v[i][j] %= MOD;
}
}
}
return c;
}
Mat operator ^ (Mat a, ll k) {
Mat c(a.n);
c.init(1);
while (k) {
if (k&1) c = a * c;
a = a * a;
k >>= 1;
}
return c;
}
void init() {
// init
repf (i, 0, 9)
a.v[9 - i][0] = i;
repf (i, 0, 8)
b.v[i + 1][i] = 1;
}
void solve() {
// read
repf (i, 0, 9)
scanf("%lld", &b.v[0][i]);
Mat c;
if (k <= 9) {
printf("%lld\n", k % MOD);
} else {
c = b ^ (k - 9);
// c.output();
c = c * a;
printf("%lld\n", c.v[0][0] % MOD);
}
}
int main() {
init();
while (~scanf("%lld%lld", &k, &MOD)) {
solve();
}
return 0;
}