Alphalens因子分析(2) - 低换手率因子秒杀98%的基金经理?

本文介绍了如何在Alphalens框架中进行因子分析,包括数据预处理、回报分析(如日均回报和分层回报)、统计特性检查以及图形展示(如violin图和累积回报图)。作者强调了换手率因子的单调性对策略的重要性,并指出Alphalens在某些场景下的局限性。

上一篇笔记,我们已经为因子分析准备好了数据。这一篇笔记,我们就进行因子分析。分析过程在 Alphalens 中非常简单,核心是读懂它的报告。

Alphalens 框架

Alphalens 的主要模块是 utils, tears, performance 和 plotting。

utils 主要功能是提供数据预处理,我们已经在上一篇笔记中,已经使用过 get_clean_factor_and_forward_returns 这个方法,实际上是由quantize_factor get_clean_factor和compute_forward_return 这样三个方法构成的。


在这个方法运行时,它会输出这样的提示信息:

Dropped 4.1% entries from factor data: 4.1% in forward returns computation and 0.0% in binning phase (set max_loss=0 to see potentially suppressed Exceptions).

max_loss is 35.0%, not exceeded: OK!

它涉及到因子分析框架的几个步骤,在我们的课程中,对其原理有详细讲解。作为一个快速入门,我们就跳过这些细节。我们只要知道,看到最后的 not exceeded: OK!就大功告成。
在这里插入图片描述

这张导图显示了Alphalens的模块组织情况:

75%


performance 模块提供因子分析的基础功能,plotting 模块提供图形绘制功能。而 tears 模块则是将 performance 与 plotting 的操作组合起来,向用户生成报告。

utils 与 tears 模块是用户接口,我们可以只使用这两个模块中的功能,而不去管 performance 与 plotting 模块具体是怎么工作的。

现在,我们来查看 factor_data(请回顾上一篇笔记,以了解这个数据是如何生成的):


列"1D"等代表了对应行所属的时间戳之后的 N 天的收益。factor 则是当时的因子值,factor_quantile 则是该因子在当天中的分层。因此,第一行记录表明,对于 000001 这个标的,在 1 月 3 日,因子为 1.13,属于第二组(由小到大,从 1 开始)。该资产在随后的一天、五天和十天内,累计涨跌幅分别为 4%, 4.9%和 8.8%。


在这里插入图片描述

接下来的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

量化风云

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值