Escape noise
Two ways to introduce noise in formal spiking neuron models:
* noisy threshold(escape model or hazard model)
* noisy integration(stochastic spike arrival model or diffusion model)
In the escape model,
the neuron may fire when u<ϑ
the neuron may stay quiescent when u>ϑ
Escape rate and hazard function
In the escape model,
spikes can occur at any time with a probability density,
ρ=f(u−ϑ)
Since u is a function of time,
ρI(t|t^)=f[u(t|t^)−ϑ]
Required condition of function f,
when
Example
f(u−ϑ)={0Δ−1forforu<ϑu≥ϑ
f(u−ϑ)=1τ0
f(u−ϑ)=β[u−ϑ]+={0β(u−ϑ)forforu<ϑu≥ϑ
f(u−ϑ)=12Δ[1+erf(u−ϑ2√σ)]
erf(x)=2π√∫x0exp(−y2)dy
Interval distribution and mean fire rate
the expect value of interval distribution = 1mean fire rate = mean period
use ρ we can get interval distribution,
PI(t|t^)=ρ exp[−∫tt^ρdt]
ρ=f[u(t|t^)−ϑ]
use SRM0,
u(t|t^)=η(t−t^)+h(t)
h(t)=∫∞0κ(s)I(t−s)ds
use non-leaky integrate-and-fire,
u(t|t^)=ur+1C∫tt^I(t′)dt′
use leaky integrate-and-fire,
u(t|t^)=RI0[1−e(−t−t^)/τm]
use SRM0 with periodic input,we get periodic response,
h(t)=h0+h1cos(Ωt+φ1)
η(s)={−∞−η0exp(−s−Δabsτ)forfors<Δabss>Δabs