Reduction of the Hodgking-Huxley model
type II
Another way of approximation, compare to two phase analysis
Reduction
Hodgkin and Huxley model:
Cdudt=−ΣIk(t)+I(t)
ΣIk=gNam3h(u−ENa)+gKn4(u−Ek)+gL(u−EL)
m˙=αm(u)(1−m)−βm(u)m
n˙=αn(u)(1−n)−βn(u)n
h˙=αh(u)(1−h)−βh(u)hSRM:
u(t)=η(t−t^)+∫t−t^0κ(t−t^i,s)Iext(t−s)ds+urest
we need to define η(t−t^), κ(t−t^), ϑη(t−t^)
action potential is stereotyped when triggered the spike
In Hodgking-Huxley model, let:
I(t)=cq0ΔΘ(t)Θ(Δ−t)
we can get u(t), then use u(t) to get η(t−t^)
η(t−(^t))=[u(t)−urest]Θ(t−t^)κ(t−t^)
weak input current, slight perturbed
Input: strong plus at t^, weak plus at t,(t>t^)
κ(t−t^,t)=1c[u(t)−η(t−t^)−urest]ϑ
threshold for spike
fixed
use different value in different cases
Scenarios
time-dependent input
the metrics:
⟨Ncoinc⟩=2νΔNfull
C=1−2νΔ
if Possison process:
if two model fit perfect:
if κ does not depend on last firing time, Γ will be lower (lower accuracy)
constant input
different ϑ make big differences
step current input
same three zones
also show inhibitory rebound
spike input
use ϵ to substitute external input:
ui(t)=η(t−ti^)+∑jwij∑fϵ(t−ti^,t−t(f)j)+urest
Reduction of a cortical neuron
type I
SRM can also be used as a quantitative model of cortical neurons.
cortical neurons has continuous gain function
Reduction to a nonlinear integrte-and-fire model
Reduction
Cdudt=−∑Ik(t)+I(t)
∑Ik=gNam3h(u−ENa)+gKslown4slow(u−EK)+gKfastn2fast(u−EK)
first step
define:
- ϑ
- Δabs
- ur
- mr
- hr
- nslow
- nfast
we get multi integrate and fire model
second step
- fast variables:
replace with steady state values (function of u) - slow variables:
replace with constant
m→m(u)
nfast→n0,fast
nslow→nslow,average
h→haverage
we get nonlinear integrate and fire model
Scenarios
constant input
fluctuating input
Reduction to SRM
Reduction
aim:
find η, κ, ϑ
first step
reduce the model to and integrate-and-fire model with spike-time-dependent time constant
second step
integrate the model, get η and κ
third step
choose appropriate spike-time-dependent threshold ϑ
Scenarios
constant input
better with dynamic threshold
fluctuating input
the accuracy is more stable than nonlinear integrate-and-fire model
Limitations
- even Γ of the multi-current integrate-and-fire model is far below 1
- time-dependent threshold of SRM is import to achieve generalize over a broad range of different inputs
- time-dependent threshold seems to be more important for the random-input task than the nonlinearity of function F(u)
- in the immediate neighborhood of the firing threshold, nonlinear integrate-and-fire model performs better than SRM
本文探讨了Hodgkin-Huxley模型的简化方法,并引入了立体化反应模型(SRM)来逼近复杂神经元的行为。通过定义关键参数η、κ及ϑ,实现了不同类型神经元的有效模拟。文中还对比了不同输入条件下SRM与完整模型的表现。
4万+

被折叠的 条评论
为什么被折叠?



