From detailed models to formal spiking neurons

本文探讨了Hodgkin-Huxley模型的简化方法,并引入了立体化反应模型(SRM)来逼近复杂神经元的行为。通过定义关键参数η、κ及ϑ,实现了不同类型神经元的有效模拟。文中还对比了不同输入条件下SRM与完整模型的表现。

Reduction of the Hodgking-Huxley model

type II

Another way of approximation, compare to two phase analysis

Reduction

  • Hodgkin and Huxley model:
    Cdudt=ΣIk(t)+I(t)
    ΣIk=gNam3h(uENa)+gKn4(uEk)+gL(uEL)
    m˙=αm(u)(1m)βm(u)m
    n˙=αn(u)(1n)βn(u)n
    h˙=αh(u)(1h)βh(u)h

  • SRM:
    u(t)=η(tt^)+tt^0κ(tt^i,s)Iext(ts)ds+urest
    we need to define η(tt^), κ(tt^), ϑ

  • η(tt^)
    action potential is stereotyped when triggered the spike
    In Hodgking-Huxley model, let:

    I(t)=cq0ΔΘ(t)Θ(Δt)

    we can get u(t), then use u(t) to get η(tt^)
    η(t(^t))=[u(t)urest]Θ(tt^)
  • κ(tt^)
    weak input current, slight perturbed
    Input: strong plus at t^, weak plus at t, (t>t^)

    κ(tt^,t)=1c[u(t)η(tt^)urest]
  • ϑ
    threshold for spike
    fixed
    use different value in different cases

Scenarios

time-dependent input

the metrics:

Γ=1CNcoincNcoinc12(NSRM+Nfull)

Ncoinc=2νΔNfull

C=12νΔ
if Possison process:

Γ=0

if two model fit perfect:
Γ=1

if κ does not depend on last firing time, Γ will be lower (lower accuracy)

constant input

different ϑ make big differences

step current input

same three zones
also show inhibitory rebound

spike input

use ϵ to substitute external input:
ui(t)=η(tti^)+jwijfϵ(tti^,tt(f)j)+urest

Reduction of a cortical neuron

type I
SRM can also be used as a quantitative model of cortical neurons.
cortical neurons has continuous gain function

Reduction to a nonlinear integrte-and-fire model

Reduction

Cdudt=Ik(t)+I(t)

Ik=gNam3h(uENa)+gKslown4slow(uEK)+gKfastn2fast(uEK)

first step

define:

  • ϑ
  • Δabs
  • ur
  • mr
  • hr
  • nslow
  • nfast

we get multi integrate and fire model

second step
  • fast variables:
    replace with steady state values (function of u)
  • slow variables:
    replace with constant
    mm(u)
    nfastn0,fast
    nslownslow,average
    hhaverage

we get nonlinear integrate and fire model

Scenarios

constant input
fluctuating input

Reduction to SRM

Reduction

aim:
find η, κ, ϑ

first step

reduce the model to and integrate-and-fire model with spike-time-dependent time constant

second step

integrate the model, get η and κ

third step

choose appropriate spike-time-dependent threshold ϑ

Scenarios

constant input

better with dynamic threshold

fluctuating input

the accuracy is more stable than nonlinear integrate-and-fire model

Limitations

  • even Γ of the multi-current integrate-and-fire model is far below 1
  • time-dependent threshold of SRM is import to achieve generalize over a broad range of different inputs
  • time-dependent threshold seems to be more important for the random-input task than the nonlinearity of function F(u)
  • in the immediate neighborhood of the firing threshold, nonlinear integrate-and-fire model performs better than SRM
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值