The task is really simple: given N exits on a highway which forms a simple cycle, you are supposed to tell the shortest distance between any pair of exits.
Input Specification:
Each input file contains one test case. For each case, the first line contains an integer N (in [3, 105]), followed by N integer distances D1 D2 … DN, where Di is the distance between the i-th and the (i+1)-st exits, and DN is between the N-th and the 1st exits. All the numbers in a line are separated by a space. The second line gives a positive integer M (<=104), with M lines follow, each contains a pair of exit numbers, provided that the exits are numbered from 1 to N. It is guaranteed that the total round trip distance is no more than 107.
Output Specification:
For each test case, print your results in M lines, each contains the shortest distance between the corresponding given pair of exits.
Sample Input:
5 1 2 4 14 9
3
1 3
2 5
4 1
Sample Output:
3
10
7
#include <iostream>
#include <stdio.h>
#include <algorithm>
using namespace std;
/*
本题有难度,得经常看看,很容易忘记
*/
int main()
{
// int N=5;
int N;//输入的个数;
scanf("%d",&N);
// int dis[N+1]={0},a[N+1]={0,1,2,4,14,9};//之所以用N+1,是计算a[1]的时候需要用a[0]来补充
int dis[N+1]={0},a[N+1]={0};//dis[N+1]存放的是第1个结点到第i个结点的下一个结点的距离,之所以下一个,考虑循环问题;a[N+1]表示相邻两结点的距离,a[1]表示结点1和结点2之间的距离
for(int i=1;i<=N;++i){
scanf("%d",&a[i]);
}
int sum=0;
/*
一直报运行超时,参考答案用了很妙的方法,直接用动态的sum来算dis,这样就不用二重循环;
for(int i=1;i<=N;++i){
sum+=a[i];//用来后期比较顺时针和逆时针的和大小
for(int j=1;j<=i;++j){
dis[i]+=a[j];
}
}
*/
for(int i=1;i<=N;++i){
sum +=a[i];
dis[i]=sum;
}
// int M=3;
int M;//需要比较的次数;
scanf("%d",&M);
int l,m;//存放输入的两个结点坐标;
int p,q;//分别存放两点之间的顺时针距离和逆时针距离;
int shortest=0;
for(int i=1;i<=M;++i){
scanf("%d%d",&l,&m);
if(l>m)swap(l,m);
p = dis[m-1]-dis[l-1];
q=sum-p;
shortest = min(p,q);
printf("%d\n",shortest);
}
return 0;
}