基础数论 Beijing 2008 HDU - 1852 (快速幂)

本文介绍了一个算法问题的解决方案,该问题要求计算2008^n的所有正整数因子之和,并进一步计算特定模数下的幂运算结果。通过分解质因数和利用等比数列求和公式,文章提供了高效的计算方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Beijing 2008
As we all know, the next Olympic Games will be held in Beijing in 2008. So the year 2008 seems a little special somehow. You are looking forward to it, too, aren’t you? Unfortunately there still are months to go. Take it easy. Luckily you meet me. I have a problem for you to solve. Enjoy your time.

Now given a positive integer N, get the sum S of all positive integer divisors of 2008 N. Oh no, the result may be much larger than you can think. But it is OK to determine the rest of the division of S by K. The result is kept as M.

Pay attention! M is not the answer we want. If you can get 2008 M, that will be wonderful. If it is larger than K, leave it modulo K to the output. See the example for N = 1,K = 10000: The positive integer divisors of 20081 are 1、2、4、8、251、502、1004、2008,S = 3780, M = 3780, 2008 M % K = 5776.

Input
The input consists of several test cases. Each test case contains a line with two integers N and K (1 ≤ N ≤ 10000000, 500 ≤ K ≤ 10000). N = K = 0 ends the input file and should not be processed.
Output
For each test case, in a separate line, please output the result.
Sample Input
1  10000
0  0
Sample Output
5776

题意:给定N和K,
首先求S,S为2008^N所有因子之和,分解2008^N=(2^3*251)^N=(2^3N )*(251^N)
2^3N , 因数有2^0 , 2^1 , 2^2,,,,,,,,2^3N
251^N ,因数有251^0,251^1,,,,251^N
令A=2^0 +2^1 + 2^2+,,,,,,,+2^3N
B=251^0+251^1+,,,,+251^N
所有因子之和=A*B=S
等比求和得到A=2^(3*N+1)-1;
B=(251^(N+1)-1)/250;
直接求S肯定超long long范围
然后求M,M=S mod K;
因此在求S时取模,在快速幂中取模
最后求2008^M%K

//快速幂
ll pow(ll a,ll m,ll mod)//分别是底数,幂,模
{   
        int res = 1;
        while(m){
            if(m&1){
                res=res*a%mod;
            }
            a=a*a%mod;
            m>>=1;
        }
        return res;
}

另外在求B时:因为B=[(251^(N+1)-1)/250 ]mod K
把250拿出来 B=(251^(N+1)-1)mod(250*K)/250;

#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<math.h>
#define ll long long
using namespace std;
ll n,k;
ll pow(ll a,ll m,ll mod)
{
    ll res=1;
    while(m){
        if(m&1){
            res=(res*a)%mod;
        }
        a=a*a%mod;
        m>>=1;
    }
    return res;
}
int main()
{
    while(scanf("%lld %lld",&n,&k)){

        if(n==0&&k==0) break;
        ll M=250*k;
        ll A=pow(2,3*n+1,M)-1;
       // cout<<A<< endl;
        ll B=pow(251,n+1,M)-1;
        //cout << B << endl;
        ll m=(A*B)%M/250;
    //printf("----%lld\n",m);
        ll s=pow(2008,m,k);
        printf("%lld\n",s);

    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值