实验平台
华为云
pytorch1.8-cuda10.2-cudnn7-ubuntu18.04
GPU: 1*V100(32GB)|CPU: 8核 64GB
实验步骤
1、数据集、预训练模型等
import moxing as mox
dataset_url = "obs://wkkk/FCN/"
mox.file.copy_parallel(dataset_url,"./")
2、训练模型
在终端输入:
python train.py
训练结束后生成results20220302-152913.txt的文件。
文件记录着每个epoch的训练效果。
[epoch: 29]
train_loss: 0.4503
lr: 0.000000
global correct: 92.8
average row correct: ['97.0', '89.3', '64.7', '73.0', '78.9', '85.0', '88.2', '91.5', '94.3', '62.0', '45.1', '72.1', '77.7', '56.5', '85.8', '95.0', '70.2', '89.7', '65.8', '75.0', '89.0']
IoU: ['93.7', '86.3', '46.3', '71.4', '68.6', '72.1', '79.9', '76.4', '76.5', '41.1', '41.8', '59.3', '58.0', '52.3', '77.4', '87.9', '59.7', '58.6', '49.3', '71.7', '70.0']
mean IoU: 66.6
3、测试结果
在终端输入:
python predict.py
分割结果:
测试1:


测试2:

测试3:

测试3:

测试4:


测试5:


该博客介绍了如何在华为云平台上利用PyTorch 1.8和CUDA 10.2进行FCN(全卷积网络)模型的训练和测试。首先,通过Moxing库从OBS下载数据集和预训练模型。接着,运行train.py启动训练,记录每个epoch的训练损失、学习率和IoU等指标。训练完成后,运行predict.py进行模型测试,并给出了多个测试样本的分割结果。
638

被折叠的 条评论
为什么被折叠?



