实验环境
华为云
pytorch 1.8-cuda10.2-cudnn7-ubuntu 18.4
GPU:1*V100(32GB)|CPU:8核 64GB
实验步骤
1、数据集、代码等的上传
import moxing as mox
dataset_url = "obs://wkkk/deep-learning-for-image-processing-master/pytorch_segmentation/unet/"
mox.file.copy_parallel(dataset_url,"./")
2、训练模型
在终端输入:
>cd work
>ls
>python train.py
3、训练结果
生成文件results20220302-133202.txt
[epoch: 199]
train_loss: 0.3271
lr: 0.000000
dice coefficient: 0.813
global correct: 95.3
average row correct: ['97.3', '81.4']
IoU: ['94.7', '68.6']
mean IoU: 81.7
4、预测结果
在终端输入:
>python predict.py
生成图片test_results.png

与人工手动分割的对比:

该博客记录了一次在华为云环境下,利用PyTorch 1.8和CUDA 10.2进行深度学习模型训练的过程。实验涉及数据集上传、模型训练、损失及评估指标展示,以及最终的预测结果,生成了对比图test_results.png。整个流程展示了从数据准备到模型应用的完整步骤。
2517

被折叠的 条评论
为什么被折叠?



