import tensorflow as tf
x = tf.random_normal([100,1],
mean=1.75,
stddev=0.5,
name='x_data')
y_true = tf.matmul(x,[[2.0]]) + 5.0
weight = tf.Variable(tf.random_normal(1,1)),
name='w',
trainable=True)
bias = tf.Variable(0.0,
name='b',
trainable=True)
y_pred = tf.matmul(x,weight) + bias
loss_val =tf.square( y_true - y_pred)
loss = tf.reduce_mean(loss_val)
train_op = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
init_op = tf.global_variables_initalizer()
tf.summary.scalar('losses',loss)
merged = tf.summary.merge_all()
with tf.Session() as sess:
sess.run(init_op)
fw = tf.summary.FileWriter('../summary/',
graph=sess.graph)
for i in range(500):
sess.run(train_op)
summary = sess.run(merged)
fw.add_summary(sumary,i)
print(i,':',weigth.eval(),',',bias.eval())