从0到1实现神经网络(Python)

从0到1实现神经网络(Python)

有个事情可能会让初学者惊讶:神经网络模型并不复杂!『神经网络』这个词让人觉得很高大上,但实际上神经网络算法要比人们想象的简单。

这篇文章完全是为新手准备的。我们会通过用Python从头实现一个神经网络来理解神经网络的原理。本文的脉络是:

  1. 介绍了神经网络的基本结构——神经元;

  2. 在神经元中使用S型激活函数;

  3. 神经网络就是连接在一起的神经元;

  4. 构建了一个数据集,输入(或特征)是体重和身高,输出(或标签)是性别;

  5. 学习了损失函数和均方差损失;

  6. 训练网络就是最小化其损失;

  7. 用反向传播方法计算偏导;

  8. 用随机梯度下降法训练网络。

砖块:神经元

首先让我们看看神经网络的基本单位,神经元。神经元接受输入,对其做一些数据操作,然后产生输出。例如,这是一个2-输入神经元:

这里发生了三个事情。首先,每个输入都跟一个权重相乘(红色):

然后,加权后的输入求和,加上一个偏差b(绿色):

最后,这个结果传递给一个激活函数f:

激活函数的用途是将一个无边界的输入,转变成一个可预测的形式。常用的激活函数就就是S型函数:

S型函数的值域是(0, 1)。简单来说,就是把(−∞, +∞)压缩到(0, 1) ,很大的负数约等于0,很大的正数约等于1。

一个简单的例子

假设我们有一个神经元,激活函数就是S型函数,其参数如下:

就是以向量的形式表示。现在,我们给这个神经元一个输入。我们用点积来表示:

当输入是[2, 3]时,这个神经元的输出是0.999。给定输入,得到输出的过程被称为前馈(feedforward)。

编码一个神经元

让我们来实现一个神经元!用Python的NumPy库来完成其中的数学计算:

import numpy as npdef sigmoid(x):
  # 我们的激活函数: f(x) = 1 / (1 + e^(-x))
  return 1 / (1 + np.exp(-x))class Neuron:
  def __init__(self, weights, bias):
    self.weights = weights
    self.bias = bias  def feedforward(self, inputs):
    # 加权输入,加入偏置,然后使用激活函数
    total = np.dot(self.weights, inputs) + self.bias
    return sigmoid(total)weights = np.array([0, 1]) # w1 = 0, w2 = 1
bias = 4                   # b = 4
n = Neuron(weights, bias)x = np.array([2, 3])       # x1 = 2, x2 = 3
print(n.feedforward(x))    # 0.9990889488055994

还记得这个数字吗?就是我们前面算出来的例子中的0.999。

把神经元组装成网络

所谓的神经网络就是一堆神经元。这就是一个简单的神经网络:

这个网络有两个输入,一个有两个神经元( 和 )的隐藏层,以及一个有一个神经元( ) )的输出层。要注意, 的输入就是 和  的输出,这样就组成了一个网络。

隐藏层就是输入层和输出层之间的层,隐藏层可以是多层的。

例子:前馈

我们继续用前面图中的网络,假设每个神经元的权重都是  ,截距项也相同  ,激活函数也都是S型函数。分别用 表示相应的神经元的输出。

当输入  时,会得到什么结果?

这个神经网络对输入的输出是0.7216,很简单。

一个神经网络的层数以及每一层中的神经元数量都是任意的。基本逻辑都一样:输入在神经网络中向前传输,最终得到输出。接下来,我们会继续使用前面的这个网络。

编码神经网络:前馈

接下来我们实现这个神经网络的前馈机制,还是这个图:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jack_pirate

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值