You are encountered with a traditional problem concerning the sums of powers.
Given two integers nn and kk. Let f(i)=ikf(i)=ik, please evaluate the sum f(1)+f(2)+...+f(n)f(1)+f(2)+...+f(n). The problem is simple as it looks, apart from the value of nnin this question is quite large.
Can you figure the answer out? Since the answer may be too large, please output the answer modulo 109+7109+7.
Input
The first line of the input contains an integer T(1≤T≤20)T(1≤T≤20), denoting the number of test cases.
Each of the following TT lines contains two integers n(1≤n≤10000)n(1≤n≤10000) and k(0≤k≤5)k(0≤k≤5).
Output
For each test case, print a single line containing an integer modulo 109+7109+7.
Sample Input
3 2 5 4 2 4 1
Sample Output
33 30 10
#include<stdio.h>
long long dabiao(long long x,long long m) { //long long 型,否则会报错
long long i,j,y,sum=0,r=1;
y=m;
while(y!=0) {
if(1&y)r=r*x%1000000007;
x=x*x%1000000007;
y=y>>1;
}
return r;
}
int main() {
int s;
scanf("%d",&s);
while(s--) {
long long n,i,k,sum;
scanf("%lld%lld",&n,&k);
sum=0;
for(i=1;i<=n;i++)
sum=(sum+dabiao(i,k))%1000000007;
printf("%d\n",sum);
}
}