E - Easy Summation

解决一个经典的幂次求和问题,对于给定的n和k,计算从1到n的所有整数的k次幂之和,并输出结果模10^9+7。此问题涉及到大数运算,采用自定义的幂次函数来避免溢出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

You are encountered with a traditional problem concerning the sums of powers. 
Given two integers nn and kk. Let f(i)=ikf(i)=ik, please evaluate the sum f(1)+f(2)+...+f(n)f(1)+f(2)+...+f(n). The problem is simple as it looks, apart from the value of nnin this question is quite large. 
Can you figure the answer out? Since the answer may be too large, please output the answer modulo 109+7109+7.
Input
The first line of the input contains an integer T(1T20)T(1≤T≤20), denoting the number of test cases. 
Each of the following TT lines contains two integers n(1n10000)n(1≤n≤10000) and k(0k5)k(0≤k≤5)
Output
For each test case, print a single line containing an integer modulo 109+7109+7.
Sample Input
3
2 5
4 2
4 1
Sample Output
33
30

10

这个题的数据量是很大的,因此每求一次a^b,都要进行取模,所以我们把pow()函数在这儿重新写 一次,同时,最后的输出结果也要取模。

#include <iostream>
#include<cstdio>
#include<cmath>
using namespace std;
const int N=1000000000+7;
long long pow1(int a,int b)
{
   long long p=1;
   for(int i=1;i<=b;i++)
   {
       p*=a;
       p%=N;
   }
   return p;
}
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
      long long a,b,sum=0;
      scanf("%lld%lld",&a,&b);
      for(int i=1;i<=a;i++)
        sum+=pow1(i,b);
      printf("%lld\n",sum%N);
    }
    return 0;
}











































评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值