【G-FRNet】Gated Feedback Refinement Network for Dense Image Labeling

本文介绍了Gated Feedback Refinement Network (G-FRNet)在解决密集图像标注问题上的应用。通过整合局部和全局上下文信息,G-FRNet使用门控单元过滤模糊信息,提升精细化识别效果。在CamVid、PASCAL VOC 2012和Horse-Cow Parsing数据集上,G-FRNet表现出色,尤其是在CamVid和Horse-Cow Parsing数据集中取得最佳结果。该网络结构基于VGG16,并利用门控细化单元进行特征融合,实现对前向传递信息的有效处理。

在这里插入图片描述
CVPR 2017,他们还有一篇CVPR 2018的文章,Gated Feedback Refinement Network for Coarse

概述

  • 要解决的问题
    • 模糊信息的前向传递会限制后面的精准识别。
      在这里插入图片描述
  • 采用的方法
    • Integrating local and global contextual information during refinement stage(refinement stage是这篇论文的部分结构)
    • gate units来处理前向传递的信息,为了过滤模糊信息。
  • 结果如何
    • 数据集CamVid, PASCAL VOC 2012, Horse-Cow Parsing
    • 在CamVid和Horse-Cow Parsing取得了最佳, 在PASCAL VOC 2012上效果比较好。
  • Contributions
    • 自己的结构吧

细节

结构:主干是VGG16
在这里插入图片描述

  • 上图中的 P m G {Pm^G} PmG表示在f7 feature map经过 3 ∗ 3 {3*3} 33卷积后得到的 h ∗ w ∗ C {h*w*C} hwC维度的结果,这是一个粗糙预测结果,其中 C {C} C表示的是类别数量。

  • Gate Unit:图中也有显示,Gate Unit的输入是两个相邻的feature map,表示为 f g i + 1 , f g i {f_g^{i+1}, f_g^{i}}

<think>好的,我现在要帮助用户了解或实现Medical Transformer模型中的Gated Axial-Attention机制,特别是用于医学图像分割的部分。首先,我需要回忆一下用户提供的引用内容。用户引用了两篇资料,其中引用[1]是关于Medical Transformer的论文和代码库,而引用[2]列出了其他相关的分割模型,但用户主要关注的是Medical Transformer。 用户的问题具体是关于Gated Axial-Attention的实现,所以需要深入理解这个机制的工作原理。根据论文,Gated Axial-Attention结合了轴向注意力和门控机制,轴向注意力指的是在图像的两个轴上(比如行和列)分别应用自注意力,这样可以减少计算量,同时捕捉长程依赖。门控机制则可能用于调整注意力权重,增强重要特征,抑制不相关的部分。 接下来,我需要考虑如何将这个机制转化为代码实现。可能需要参考论文中的结构图和公式。例如,轴向注意力可能分为行注意力和列注意力两个部分,然后通过门控机制进行融合。门控可能使用sigmoid函数来生成0到1之间的权重,然后将这两个注意力输出加权相加。 然后,我需要检查用户提供的代码链接,确保代码结构正确。用户给出的GitHub仓库是jeya-maria-jose/Medical-Transformer,所以应该参考其中的实现。例如,可能在axial_attention.py或者类似的文件中找到Gated Axial-Attention的代码。 此外,需要注意医学图像的特点,比如高分辨率和局部细节的重要性,这可能影响模型的设计。例如,轴向注意力可以处理二维结构,而门控机制帮助模型专注于关键区域,这对分割任务很重要。 用户可能需要具体的代码示例,所以需要提供PyTorch的实现片段,包括轴向注意力的分解、位置编码的添加,以及门控机制的应用。同时,要解释每个部分的作用,比如如何计算查询、键、值,如何应用位置编码,如何生成门控权重,并融合行和列的注意力结果。 还需要考虑实现中的细节,比如如何将二维图像转换为序列以适应Transformer结构,如何处理位置信息,以及如何将轴向注意力模块集成到UNet等分割网络中。可能还需要讨论数据预处理、训练策略和损失函数的选择,比如结合Dice损失和交叉熵损失。 最后,用户可能对如何应用该模型到自己的医学图像数据感兴趣,所以需要给出训练和推理的步骤,比如加载数据、构建模型、设置优化器和训练循环等。同时,提供相关的参考文献和代码库链接,方便用户进一步查阅。</think>以下是为您整理的Medical Transformer中Gated Axial-Attention实现详解: ### 一、Gated Axial-Attention机制解析 1. **轴向注意力分解**:将2D自注意力分解为行、列两个1D注意力操作 $$ \text{Attention}(Q,K,V) = \text{Softmax}(\frac{QK^T}{\sqrt{d_k}} + P)V $$ 其中位置编码$P$分解为$P_{row}$和$P_{col}$[^1] 2. **门控机制实现**: ```python class GatedAxialAttention(nn.Module): def __init__(self, dim, heads): super().__init__() self.row_att = AxialAttention(dim, heads, axis=0) # 行注意力 self.col_att = AxialAttention(dim, heads, axis=1) # 列注意力 self.gate = nn.Parameter(torch.ones(2)) # 可学习门控参数 def forward(self, x): row_out = self.row_att(x) col_out = self.col_att(x) # 门控融合 return torch.sigmoid(self.gate[0])*row_out + torch.sigmoid(self.gate[1])*col_out ``` ### 二、完整实现步骤 1. **特征序列化**:将2D医学图像转换为序列 ```python b, c, h, w = x.shape x_seq = x.view(b, c, h*w).permute(0, 2, 1) # [b, h*w, c] ``` 2. **位置编码注入**: ```python class AxialPositionalEmbedding(nn.Module): def __init__(self, dim, shape): super().__init__() self.row_emb = nn.Parameter(torch.randn(shape[0], dim//2)) self.col_emb = nn.Parameter(torch.randn(shape[1], dim//2)) def forward(self, x): return x + torch.cat([self.row_emb.unsqueeze(1), self.col_emb.unsqueeze(0)], dim=-1).flatten(0,1) ``` 3. **完整网络架构**(基于UNet框架): ```python class MedicalTransformer(nn.Module): def __init__(self, in_ch=3, classes=2): super().__init__() self.encoder = nn.Sequential( ConvBlock(in_ch, 64), GatedAxialAttention(64, heads=4), Downsample(64, 128), GatedAxialAttention(128, heads=8), Downsample(128, 256) ) self.decoder = ... # 对称上采样结构 ``` ### 三、训练实践要点 1. **数据预处理**: - 医学图像标准化(CT值截断+归一化) - 随机旋转/翻转增强 - 器官特定ROI裁剪 2. **损失函数组合**: ```python loss = 0.5*DiceLoss()(pred, mask) + 0.5*CrossEntropyLoss()(pred, mask) ``` 3. **训练策略**: ```python optimizer = AdamW(model.parameters(), lr=1e-4, weight_decay=1e-5) scheduler = CosineAnnealingLR(optimizer, T_max=100) ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值