General DP question.
#include <vector>
#include <iostream>
#include <climits>
using namespace std;
/*
You are given coins of different denominations and a total amount of money amount.
write a function to compute the fewest number of coins that you need to make up
the amount. If that amount of money cannot be made up by any combination of the coins.
return -1.
Example:
coins = [1, 2, 5], amount = 11
return 3 (11 == 5 + 5 + 1)
coins = [2], amount = 3;
return -1;
*/
int coinChange(vector<int>& coins, int amount) {
vector<int> dp(amount+1, INT_MAX); // this initialize is very important. since some value can't be exchanged.
dp[0] = 0;
for(int i = 1; i <= amount; ++i) {
for(int j = 0; j < coins.size(); ++j) {
if(i - coins[j] >= 0) {
int sub_res = dp[i-coins[j]];
if(sub_res != INT_MAX && sub_res + 1 < dp[i]) dp[i] = sub_res + 1;
}
}
}
if(dp[amount] == INT_MAX) return -1;
return dp[amount];
}
int main(void) {
vector<int> coins{2, 5};
cout << coinChange(coins, 8) << endl;
cout << coinChange(coins, 3) << endl;
}
// Variations.
// Get the total number of coin exchanges to the whole sum.
// number of ways combinations.
// table[i][j] == table[i][j] + table[i][j-coins[k]];
int coinCombinations(int sum, vector<int>& coins) {
int n = coins.size();
vector< vector<int> > table(sum + 1, vector<int>(n, 0));
for(int i = 0; i < n; ++i) {
table[0][i] = 1;
}
for(int i = 1; i <= sum; ++i) {
for(int j = 0; j < n; ++j) {
int x = (i - coins[j] >= 0) ? table[i - coins[j]][j] : 0;
int y = (j >= 1) ? table[i][j-1] : 0;
table[i][j] = x + y;
}
}
return table[sum][n - 1];
}
// To further optimize,
int exchange(vector<int>& coins, int sum) {
vector<int> dp(sum + 1, 0);
dp[0] = 1;
int n = coins.size();
for(int i = 0; i < n; ++i) {
for(int j = coins[i]; j <= sum; ++j) {
dp[j] += dp[j - coins[i]];
}
}
return dp[sum];
}
Another variation:
Given a non-negative number n, find out how many ways n can be made by summing up non-negative integers.
int waysSum(int n) { // these are all backpacking series problems.
vector< vector<int> > dp(n + 1, vector<int>(n + 1, 0));
for(int j = 0; j < n; ++j) {
dp[0][j] = 1;
}
for(int i = 0; i <= n; ++i) {
for(int j = 1; j <= n; ++j) {
// do not include j.
dp[i][j] = dp[i][j-1];
if(i - j >= 0) {
dp[i][j] += dp[i-j][j];
}
}
}
return dp[n][n];
}
int main(void) {
cout << waysSum(2) << endl;
}

本文讨论了使用不同面额的硬币凑齐指定金额的最少数量,并提供了求解此类问题的算法。还涉及了硬币组合的总数、交换次数到总金额的计算方法。同时,通过实例演示了如何解决这些问题。
1230

被折叠的 条评论
为什么被折叠?



