随机密钥预分配方案的广播加密技术解析
1. 随机密钥预分配系统基础
在随机密钥预分配系统中,TA(可信机构)拥有一组索引为 $P$ 的秘密、一个加密哈希函数 $h()$ 和一个公共随机函数 $FH()$。对于节点 $A$,$FH(A) = {(\alpha_1, a_1), (\alpha_2, a_2), \ldots, (\alpha_k, a_k)}$,且 $A = {a_1K_{\alpha_1}, a_2K_{\alpha_2}, \ldots, a_kK_{\alpha_k}}$。这里,$iK_j$ 表示使用加密哈希函数 $h()$ 对 $K_j$ 进行 $i$ 次重复哈希的结果。第一个坐标 ${\alpha_1, \alpha_2, \ldots, \alpha_k}$($1 \leq \alpha_i \leq P$ 且 $\alpha_i \neq \alpha_j$,$\forall i \neq j$)代表预加载到节点 $A$ 中的密钥索引;第二个坐标 ${a_1, a_2, \ldots, a_k}$ 是独立同分布且均匀分布在 1 到 $L$ 之间的整数值,代表每个选定密钥在预加载到节点 $A$ 之前的哈希次数。
LM - KPS 和 RPS 实际上是 HARPS 的特殊情况。当 $P = k$ 时,HARPS 即为 LM;当 $L = 0$(即密钥在预加载前不进行哈希)时,HARPS 即为 RPS。
2. 基于随机 KPS 的广播加密
由于 HARPS 是 LM 和 RPS 的推广,我们主要考虑使用 HARPS 进行广播加密。在使用 HARPS 进行广播加密(BE)时,发送者使用未被 $r$ 个被撤销节点的并集覆盖的所有秘密的一个