Catalan数

今天看到搜狐的一道笔试题目,问四对括号可以有多少种匹配排列方式,一看到这个题目首先想到的是利用栈来解决,左括号入栈,右括号出栈,即求四次入栈四次出栈中正确的组合有多少种。继而准备采用全排列来解决,但是再仔细一想,这应该是一个数学的问题,肯定有某种规律可循,随便一搜,果然,在组合数学中有一种数列叫做Catalan数,正是来解决这个问题的。

 

ZZ From 百度百科

卡特兰数

  前几项为 (OEIS中的数列A000108): 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, ...

原理

  令h(1)=1,h(0)=1,catalan数满足递归式:   

                   h(n)= h(0)*h(n-1)+h(1)*h(n-2) + ... + h(n-1)h(0) (其中n>=2)   

      另类递归式:   

                   h(n)=((4*n-2)/(n+1))*h(n-1);   

      该递推关系的解为:   

                   h(n)=C(2n,n)/(n+1) (n=1,2,3,...)

卡特兰数的应用

出栈次序问题

  一个栈(无穷大)的进栈序列为1,2,3,…,n,有多少个不同的出栈序列?   

分析   

      对于每一个数来说,必须进栈一次、出栈一次。我们把进栈设为状态‘1’,出栈设为状态‘0’。 n个数的所有状态对应n个1和n个0组成的2n位二进制数。由于等待入栈的操作数按照1‥n的顺序排列、入栈的操作数b大于等于出栈的操作数 a(a≤b),因此输出序列的总数目=由左而右扫描由n个1和n个0组成的2n位二进制数,1的累计数不小于0的累计数的方案种数。   

      在2n位二进制数中填入n个1的方案数为c(2n,n),不填1的其余n位自动填0。从中减去不符合要求(由左而右扫描,0的累计数大于1的累计数)的方案数即为所求。

  不符合要求的数的特征是由左而右扫描时,必然在某一奇数位2m+1位上首先出现m+1个0的累 计数和m个1的累计数,此后的2(n-m)-1位上有n-m个 1和n-m-1个0。如若把后面这2(n-m)-1位上的0和1互换,使之成为n-m个0和n-m-1个1,结果得1个由n+1个0和n-1个1组成的 2n位数,即一个不合要求的数对应于一个由n+1个0和n-1个1组成的排列。

  反过来,任何一个由n+1个0和n-1个1组成的2n位二进制数,由于0的个数多2个,2n为 偶数,故必在某一个奇数位上出现0的累计数超过1的累计数。同样在后面部分0和1互换,使之成为由n个0和n个1组成的2n位数,即n+1个0和n-1个 1组成的2n位数必对应一个不符合要求的数。

  因而不合要求的2n位数与n+1个0,n-1个1组成的排列一一对应。

  显然,不符合要求的方案数为c(2n,n+1)。由此得出 输出序列的总数目=c(2n,n)-c(2n,n+1)=1/(n+1)*c(2n,n)。   (这个公式的下标是从h(0)=1开始的)

类似问题

  1. 有2n个人排成一行进入剧场。入场费5元。其中只有n个人有一张5元钞票,另外n人只有10元钞票,剧院无其它钞票,问有多少中方法使得只要有10元的人买票,售票处就有5元的钞票找零?(将持5元者到达视作将5元入栈,持10元者到达视作使栈中某5元出栈)

      2. 给定N个节点,能构成多少种不同的二叉树?

 

Catalan数真是一个神奇的数字,很多组合问题的数量都和它有关系,例如:

  • Cn= 长度为 2n的 Dyck words的数量。 Dyck words是由 n个 X和 n个 Y组成的字符串,并且从左往右数, Y的数量不超过 X,例如长度为 6的 Dyck words为:

XXXYYY XYXXYY XYXYXY XXYYXY XXYXYY

  • Cn= n对括号正确匹配组成的字符串数,例如 3对括号能够组成:

((())) ()(()) ()()() (())() (()())

  • Cn= n+1个数相乘,所有的括号方案数。例如, 4个数相乘的括号方案为:

 
((ab)c)d (a(bc))d (ab)(cd) a((bc)d) a(b(cd))

  • Cn= 拥有 n+1 个叶子节点的二叉树的数量。例如 4个叶子节点的所有二叉树形态:

                             

  • Cn=n*n的方格地图中,从一个角到另外一个角,不跨越对角线的路径数,例如, 4×4方格地图中的路径有:

                            

  • Cn= n+2条边的多边形,能被分割成三角形的方案数,例如 6边型的分割方案有:

                            

 

其他应用可参考《Enumerative Combinatorics》一书,在这本书中到了多达 66种组合问题和卡特兰数有关。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值