题目
Given a string of numbers and operators, return all possible results from computing all the different possible ways to group numbers
and operators. The valid operators are +
, -
and *
.
Example 1
Input: "2-1-1"
.
((2-1)-1) = 0 (2-(1-1)) = 2
Output: [0, 2]
Example 2
Input: "2*3-4*5"
(2*(3-(4*5))) = -34 ((2*3)-(4*5)) = -14 ((2*(3-4))*5) = -10 (2*((3-4)*5)) = -10 (((2*3)-4)*5) = 10
Output: [-34, -14, -10, -10, 10]
分析
这是一个典型的分治算法的例子,首先选定字符串中某个操作符,假设其为最后一步计算,子问题是计算该操作符两边的子串的值,这是与原问题同类型的规模更小的问题。递归求解这些子问题,通过合并得到原问题的解。
复杂度
设操作符所出现的位置的集合为S,易知
且|S|<n/2。设n= 2m,故
代码
#include <string>
#include <iostream>
#include <vector>
#include <stdlib.h>
using namespace std;
class Solution {
public:
vector<int> diffWaysToCompute(string input) {
vector<int> result;
if (input.size() == 0)
return result;
bool x = true;
for (int i = 0;i < input.size();i++)
if (input[i] < '0' || input[i] > '9')
{
x = false;
break;
}
if (x)
{
result.push_back(atoi(input.c_str()));
return result;
}
for (int i = 0;i < input.size();i++)
{
if (input[i] < '0' || input[i] > '9')
{
vector<int> result1 = diffWaysToCompute(input.substr(0,i));
vector<int> result2 = diffWaysToCompute(input.substr(i+1));
if (input[i] == '-')
for (int j = 0;j < result1.size();j++)
for (int k = 0;k < result2.size();k++)
result.push_back(result1[j] - result2[k]);
else if (input[i] == '+')
for (int j = 0;j < result1.size();j++)
for (int k = 0;k < result2.size();k++)
result.push_back(result1[j] + result2[k]);
else
for (int j = 0;j < result1.size();j++)
for (int k = 0;k < result2.size();k++)
result.push_back(result1[j] * result2[k]);
}
}
return result;
}
};