目录
前言
矩阵散点图(Matrix Scatter Plot)是散点图的扩展,当欲同时观察多个变量间的相关关系时,若一一绘制它们间的简单散点图,十分麻烦。此时可利用散点图矩阵来同时绘制各自变量间的散点图,这样可以快速发现多个变量间的主要相关性,这一点在进行多元线性回归时显得尤为重要,它从一定程度上克服了在平面上展示高维数据的困难,在展示多维数据的两两关系时有着不可替代的作用。
关键特征:
1、多变量关系展示:
对角线上方和下方的图是散点图,显示两个变量之间的关系。散点的分布可以揭示变量之间是否存在相关性,比如线性关系、非线性关系或没有明显关系。
2、分布可视化:
对角线上的图通常是直方图或密度图,显示单个变量的分布。这有助于了解数据的分布形状、集中趋势和离散程度。
3、数据分组:
不同的颜色或形状可以代表数据中的分类变量。
用途:
关系识别:快速识别多个变量