[树状数组] hdu 5372 Segment Game

题目分析

    记录左端点、右端点两棵线段树。在添加某线段时,其完全所覆盖的前面的线段数量为: ans=totnumlr
    其中,tot为总线段数,numl为小于当前线段左端点的左端点数,r为大于当前线段右端点的右端点数,numl和r都是没有被覆盖的线段数量,用总数-不合题意数得到的就是合题数。(由于前面的线段长度短,因此无重复)。
    记小于等于当前线段右端点的右端点数为numr,则 r=totnumr
    故 ans=numrnuml
    另外数据范围太大,需要离散化,由于需要的是左、右端点分别的对应大小关系,故只需分别离散化即可。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<algorithm>
#define lson l,mid,cur<<1
#define rson mid+1,r,cur<<1|1
typedef long long ll;
using namespace std;
const int maxn = 2e5+7;
int maxb;
int n;

int btl[maxn], btr[maxn];
inline int lowbit(int x){return x & -x;}

void add(int bit[], int x, int val)
{for(int i = x; i <= maxb; i+=lowbit(i)) bit[i] += val;}

int query(int bit[], int x)
{
    int res = 0;
    for(int i = x; i > 0; i -= lowbit(i)) res += bit[i];
    return res;
}

int del[maxn],x[maxn],y[maxn],z[maxn];
int ld,ly;

int sub[maxn];
void disc(int y[], const int &n)
{
    for(int i=1;i<= n; i++) sub[i] = y[i];
    sort(sub+1, sub+1 + n);
    int *t = unique(sub+1, sub+1+n);
    for(int i = 1; i <= n; i++)
        y[i] = lower_bound(sub+1, t, y[i]) - sub;
}

int main()
{
    int cnt = 1;
    while(cin>>n)
    {
        ld=ly=0;
        printf("Case #%d:\n", cnt++);
        for(int i = 1; i <= n; i++)
        {
            scanf("%d",&x[i]);
            if(x[i])
                scanf("%d", &del[++ld]);
            else
            {
                scanf("%d", &y[++ly]);
                z[ly] = y[ly] + ly;
            }
        }
        maxb = ly;
        for(int i  = 0; i <= maxb; i++)
            btl[i] = btr[i] = 0;
        disc(y,ly);
        disc(z,ly);
        int p1 = 0, p2 = 0;
        for(int i = 1; i <= n; i++)
        {
            if(x[i])
            {
                add(btl, y[del[++p2]], -1);
                add(btr, z[del[p2]], -1);
            }
            else
            {
                int l=y[++p1],r=z[p1];
                printf("%d\n",query(btr,r)-query(btl,l-1));
                add(btl,l,1);
                add(btr,r,1);
            }
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值