题目分析
记录左端点、右端点两棵线段树。在添加某线段时,其完全所覆盖的前面的线段数量为:
ans=tot−numl−r
其中,tot为总线段数,numl为小于当前线段左端点的左端点数,r为大于当前线段右端点的右端点数,numl和r都是没有被覆盖的线段数量,用总数-不合题意数得到的就是合题数。(由于前面的线段长度短,因此无重复)。
记小于等于当前线段右端点的右端点数为numr,则
r=tot−numr
故
ans=numr−numl
另外数据范围太大,需要离散化,由于需要的是左、右端点分别的对应大小关系,故只需分别离散化即可。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<algorithm>
#define lson l,mid,cur<<1
#define rson mid+1,r,cur<<1|1
typedef long long ll;
using namespace std;
const int maxn = 2e5+7;
int maxb;
int n;
int btl[maxn], btr[maxn];
inline int lowbit(int x){return x & -x;}
void add(int bit[], int x, int val)
{for(int i = x; i <= maxb; i+=lowbit(i)) bit[i] += val;}
int query(int bit[], int x)
{
int res = 0;
for(int i = x; i > 0; i -= lowbit(i)) res += bit[i];
return res;
}
int del[maxn],x[maxn],y[maxn],z[maxn];
int ld,ly;
int sub[maxn];
void disc(int y[], const int &n)
{
for(int i=1;i<= n; i++) sub[i] = y[i];
sort(sub+1, sub+1 + n);
int *t = unique(sub+1, sub+1+n);
for(int i = 1; i <= n; i++)
y[i] = lower_bound(sub+1, t, y[i]) - sub;
}
int main()
{
int cnt = 1;
while(cin>>n)
{
ld=ly=0;
printf("Case #%d:\n", cnt++);
for(int i = 1; i <= n; i++)
{
scanf("%d",&x[i]);
if(x[i])
scanf("%d", &del[++ld]);
else
{
scanf("%d", &y[++ly]);
z[ly] = y[ly] + ly;
}
}
maxb = ly;
for(int i = 0; i <= maxb; i++)
btl[i] = btr[i] = 0;
disc(y,ly);
disc(z,ly);
int p1 = 0, p2 = 0;
for(int i = 1; i <= n; i++)
{
if(x[i])
{
add(btl, y[del[++p2]], -1);
add(btr, z[del[p2]], -1);
}
else
{
int l=y[++p1],r=z[p1];
printf("%d\n",query(btr,r)-query(btl,l-1));
add(btl,l,1);
add(btr,r,1);
}
}
}
return 0;
}