[BZOJ4317][Atm的树][LCA+点分治]

本文介绍了一种使用LCA和点分治技术解决特定树上路径统计问题的方法。该问题要求在大小为N的一棵无根树上找出每个点与其他所有点路径中第K长的路径。通过点分治和线段树维护路径信息,并利用LCA进行路径长度计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[BZOJ4317][Atm的树][LCA+点分治]

题目大意:

求大小为N一棵无根树上每个点和其它所有点树上路径中第K长的路径。

思路:

这种树上路径统计问题应该一眼就能看出是树分治裸题吧。。。但是即使是裸的,代码量依然大得吓人(所以LCA倍增数组开小了一位刚好溢出调了好久。)

先对树点分一遍,对每个重心所管辖的所有子节点连接重心的路径都维护到重心上的权值线段树(线段树要动态开不然会炸),还要预处理出点分树。

p[i]i节点点分树上的父亲,dist(i,j)为树上两点之前的长度,D为当前路径长度,sum(i,k)为以i节点为根长度<=k的路径数量。

然后对于每个节点x,二分答案D后,从x开始往点分树的父亲上跑,每经过一个节点就统计:

sum(x,D)sum(p[x],Ddist(x,p[x]))

哎呀就是一个简单的容斥啦

然后把D更新为Ddist(x,p[x])x更新为p[x],一直爬到点分树根节点为止。

二分,爬点分树,线段树区间统计和的复杂度都是logn,所以总时间复杂度是O(nlog3n)

代码:
#include <cstdio>
const int Maxn = 100010;
typedef long long ll;
inline ll Max(const ll &a, const ll &b) {
    return a > b ? a : b;
}
inline int Min(const ll &a, const ll &b) {
    return a < b ? a : b;
}
inline void swap(ll &a, ll &b) {
    static ll c;
    c = a;
    a = b;
    b = c;
}

ll n, k;
ll head[Maxn], sub;
struct Edge {
    ll to, nxt, v;
    Edge(void) {}
    Edge(const ll &to, const ll &nxt, const ll &v) : to(to), nxt(nxt), v(v) {}
} edge[Maxn << 1];
inline void add(ll a, ll b, ll v) {
    edge[++sub] = Edge(b, head[a], v), head[a] = sub;
}
ll siz[Maxn], son[Maxn], root, S, rt[Maxn][2], p[Maxn];
bool vis[Maxn];

namespace IO {
    inline char get(void) {
        static char buf[1000000], *p1 = buf, *p2 = buf;
        if (p1 == p2) {
            p2 = (p1 = buf) + fread(buf, 1, 1000000, stdin);
            if (p1 == p2) return EOF;
        }
        return *p1++;
    }
    inline void read(ll &x) {
        x = 0; static char c;
        for (; !(c >= '0' && c <= '9'); c = get());
        for (; c >= '0' && c <= '9'; x = x * 10 + c - '0', c = get());
    }
    inline void write(ll x) {
        if (!x) return (void)puts("0");
        if (x < 0) putchar('-'), x = -x;
        static short s[12], t;
        while (x) s[++t] = x % 10, x /= 10;
        while (t) putchar('0' + s[t--]);
        putchar('\n');
    }
};
namespace Q {
#define Maxw 1000000
    ll s[Maxw], ls[Maxw], rs[Maxw], sz;
    inline void insert(ll &o, ll l, ll r, ll V) {
        if (!o) o = ++sz;
        s[o]++;
        if (l == r) return;
        int mid = (l + r) >> 1;
        if (mid >= V) insert(ls[o], l, mid, V);
        else insert(rs[o], mid + 1, r, V);
    }
    inline int query(ll o, ll l, ll r, ll L, ll R) {
        if (l >= L && r <= R) {
            return s[o];
        }
        if (!s[o]) return 0;
        int mid = (l + r) >> 1, ret = 0;
        if (mid >= L) ret += query(ls[o], l, mid, L, R);
        if (mid < R) ret += query(rs[o], mid + 1, r, L, R);
        return ret;
    }
#undef Maxw
};
namespace LCA {
    ll ff[Maxn][21], dep[Maxn], len[Maxn];
    inline void dfs1(ll u, ll fa) {
        ff[u][0] = fa;
        for (ll i = 1; i <= 20; i++) {
            ff[u][i] = ff[ff[u][i - 1]][i - 1];
        }
        for (ll i = head[u], v; i; i = edge[i].nxt) {
            v = edge[i].to;
            if (v == fa) continue;
            dep[v] = dep[u] + 1;
            len[v] = len[u] + edge[i].v;
            dfs1(v, u);
        }
    }
    inline ll lca(ll x, ll y) {
        if (dep[x] < dep[y]) swap(x, y);
        ll tmp = dep[x] - dep[y];
        for (int k = 0, j = 1; j <= tmp; j <<= 1, k++)
            if (tmp & j) x = ff[x][k];
        while (x != y) {
            ll j = 0;
            while (ff[x][j] != ff[y][j]) j++;
            if (j) j--;
            x = ff[x][j], y = ff[y][j];
        }
        return x;
    }
    inline ll dist(ll x, ll y) {
        return len[x] + len[y] - (len[lca(x, y)] << 1);
    }
};

inline void getroot(ll u, ll fa) {
    siz[u] = 1;
    for (ll i = head[u], v; i; i = edge[i].nxt) {
        v = edge[i].to;
        if (v == fa || vis[v]) continue;
        getroot(v, u);
        siz[u] += siz[v];
        son[u] = Max(son[u], siz[v]);
    }
    son[u] = Max(son[u], S - siz[u]);
    if (son[u] < son[root]) root = u;
}
inline void runpath(ll r, ll u, ll fa, ll type, ll dist) {
    Q::insert(rt[r][type], 0, n, dist);
    //printf("root[%d][%d] += dist[%d] (%d)\n", root, type, u, dist);
    for (ll i = head[u], v; i; i = edge[i].nxt) {
        v = edge[i].to;
        if (v == fa || vis[v]) continue;
        runpath(r, v, u, type, dist + edge[i].v);
    }
}
inline void solve(ll x) {
    vis[x] = 1; runpath(x, x, 0, 0, 0);
    for (ll i = head[x], v; i; i = edge[i].nxt) {
        v = edge[i].to;
        if (vis[v]) continue;
        S = siz[v]; root = 0;
        getroot(v, 0);
        p[root] = x;
        runpath(root, v, x, 1, edge[i].v);
        solve(root);
    }
}
inline bool check(ll x, ll mid) {
    ll now = mid, ret = 0;
    for (ll i = x; i; i = p[i]) { /// i | p[i] ?
        ret += Q::query(rt[i][0], 0, n, 0, now);
        now -= LCA::dist(i, p[i]);
        ret -= Q::query(rt[i][1], 0, n, 0, now);
    }
    return (ret - 1) >= k;
}
#define INF (1 << 30) 
int main(void) {
    //freopen("in.txt", "r", stdin);
    //freopen("out.txt", "w", stdout);
    IO::read(n), IO::read(k);
    for (ll i = 1, a, b, v; i < n; i++) {
        IO::read(a), IO::read(b), IO::read(v);
        add(a, b, v); add(b, a, v);
    }
    S = son[0] = n, root = 0;
    LCA::dfs1(1, 0);
    getroot(1, 0);
    solve(root);
    for (ll i = 1; i <= n; i++) {
        ll L = 0, R = INF, mid;
        while (L < R - 1) {
            mid = (L + R) >> 1;
            if (check(i, mid)) R = mid;
            else L = mid;
        }
        IO::write(R);
    }
    return 0;
}

#undef INF

完。

By g1n0st

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值