爬虫scrapy:房天下数据

项目结构:

fangtianxia.py

import scrapy
from fangtianxia_1.items import Fangtianxia1Item
import re
from datetime import datetime
from fangtianxia_1.items import CityTotalCountItem


class FangtianxiaSpider(scrapy.Spider):
    name = 'fangtianxia'
    # allowed_domains = ['fangtianxia.com', 'esf.fangtianxia.com']
    allowed_domains = ['fangtianxia.com']
    start_urls = ['https://www.fang.com/SoufunFamily.html']

    def parse(self, response):
        print(response, response.url, '************************************')
        trs = response.xpath('//div[@class="outCont"]//tr[@id and position()>1]')
        province_name = None
        provinces = []
        cities = []
        for tr in trs:
            province = tr.xpath('./td[not(@class)]/strong/text()').get("")
            if province == "其它":
                continue
            if province and province != " ":
                province_name = province
                provinces.append(province_name)
            city_tds = tr.xpath('./td[last()]/a')
            for city in city_tds:
                city_name = city.xpath('./text()').get()
                city_url = city.xpath('./@href').get()
                if "bj." in city_url:
                    esf_house_url = "https://esf.fang.com/"
                else:
                    house_url = city_url.split("//")
                    url_tail = house_url[1].split(".") # esf.changji.fang.com -> changji.esf.fang.com
                    if len(url_tail) == 4:  # 昌吉和香港的网址比较特殊,需要单独处理
                        if url_tail[1] == 'changji':
                            esf_house_url = 'https://' + url_tail[1] + '.' + url_tail[0] + '.' + url_tail[2] + '.' + url_tail[3]
                        elif url_tail[0] == 'hk':
                            esf_house_url = 'https://' + house_url[1]
                    else:
                        esf_house_url = "https://" + url_tail[-3] + ".esf." + url_tail[-2] + "." + url_tail[-1]
                # print('province_name = ', province_name, ', city_name = ', city_name)
                cities.append(city_name)
                # if province_name == '':
                yield scrapy.Request(url=esf_house_url, callback=self.parse_esf_house,
                                         meta={"info": (province_name, city_name, esf_house_url)}, dont_filter=True)

    def parse_esf_house(self, response):
        province, city, esf_house_url = response.meta.get('info')
        # dls = response.xpath("//div[@class='main1200 clearfix']/div[@class='main945 floatl']/"
        #                      "div[@class='shop_list shop_list_4']/dl")
        total_count = response.xpath("//div[@class='main1200 clearfix']/div[@class='main945 floatl']/"
                             "div[@class='advert clearfix']/div[@class='floatl']/div[@class='clearfix advert_list']/"
                             "ul[3]/li[@class='col14']/b/text()").get()
        num = 0
        for dl in dls:
            name = dl.xpath('./dd[1]/h4[@class="clearfix"]/a/@title').get()
            describe = dl.xpath('./dd[1]/p[@class="tel_shop"]/text()').getall()
            try:
                rooms = describe[0].strip()
            except Exception:
                rooms = "暂无数据"
            try:
                area = describe[1].strip()
            except Exception:
                area = "暂无数据"
            try:
                floor = describe[2].strip()
            except Exception:
                floor = "暂无数据"
            try:
                toward = describe[3].strip()
            except Exception:
                toward = "暂无数据"
            try:
                year = describe[4].strip()
            except Exception:
                year = "暂无数据"
            address = dl.xpath('./dd[1]/p[@class="add_shop"]/span/text()').get()
            community = dl.xpath('./dd[1]/p[@class="add_shop"]/a/@title').get()
            # area = describe[1].strip()   # 面积
            price = dl.xpath('./dd[2]/span[1]/b/text()').get()
            # price_text = dl.xpath('./dd[@class="price_right"]/span[1]/text()').get()
            # price = price_text.xpath('string(.)').strip()
            unit = dl.xpath('./dd[2]/span[2]/text()').get()
            item = Fangtianxia1Item(province=province, city=city, name=name, rooms=rooms, floor=floor, toward=toward, \
                                year=year, address=address, community=community, area=area, price=price, unit=unit)
            # print(item, '*****************************')
            num += 1
        print('province = ', province, ', city = ', city, ', total_count = ', total_count)
        item = CityTotalCountItem(province=province, city=city, total_count=total_count)
        yield item

        # next_page = response.xpath('//a[@id="PageControl1_hlk_next"]/@href').get()
       
        next_page = response.xpath("//div[@class='main1200 clearfix']/div[@class='main945 floatl']/"
                                   "div[@class='page_box']/div[@class='page_al']/"
                                   "p[last()-1]/a[text()='下一页']/@href").get()
        print('------------------next_page = ', next_page)
        
        # print('------------------num = ', num)
        # url = response.urljoin(next_page_url)
        
        # https://nc.esf.fang.com/house/i33/   35
        # response.urljoin(next_page[1:len(next_page)])
        

        
        if next_page:
            # next_page_url = response.url + next_page[1:len(next_page)]
            # print('------------------response.url = ',  response.url)
            print('------------------esf_house_url = ',  esf_house_url)
            print('------------------next_page[1:len(next_page)] = ',  next_page[1:len(next_page)])
            print('------------------esf_house_url + next_page[1:len(next_page)] = ',  esf_house_url + (next_page[1:len(next_page)]))
            yield scrapy.Request(url=esf_house_url + next_page[1:len(next_page)], callback=self.parse_esf_house,
                                 meta={"info": (province, city, esf_house_url), 'dont_redirect': True, 'handle_httpstatus_list': [302]},
                                 dont_filter=True)
       

items.py:

# Define here the models for your scraped items
#
# See documentation in:
# https://docs.scrapy.org/en/latest/topics/items.html

import scrapy


class Fangtianxia1Item(scrapy.Item):
    # define the fields for your item here like:
    # name = scrapy.Field()
    """二手房item"""
    province = scrapy.Field()  # 省份
    city = scrapy.Field()  # 城市
    name = scrapy.Field()  # 标题
    rooms = scrapy.Field()  # 房间数
    floor = scrapy.Field()  # 楼层
    toward = scrapy.Field()  # 朝向
    year = scrapy.Field()  # 年份
    address = scrapy.Field()  # 地点
    community = scrapy.Field()  # 小区
    area = scrapy.Field()  # 面积
    price = scrapy.Field()  # 总价
    unit = scrapy.Field()  # 单价


class CityTotalCountItem(scrapy.Item):
    province = scrapy.Field()
    city = scrapy.Field()
    total_count = scrapy.Field()

pipelines.py:

# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html


# useful for handling different item types with a single interface
from itemadapter import ItemAdapter
import csv
import os


class Fangtianxia1Pipeline:
    def __init__(self):
        self.parent_path = 'D:/A_graduate/2020-2021-1/spider/info/网站每个城市的在售房数量_3'

        # self.f = open('D:/A_graduate/2020-2021-1/spider/网站每个城市的在售房数量.csv', 'a', encoding='utf-8', newline="")

    def process_item(self, item, spider):
        print("Fangtianxia1Pipeline--process_item----------------------")

        #  创建文件夹:每个省份一个文件夹,省名作为文件夹名字
        province_name = item['province']
        # province_dir = os.path.join(self.parent_path, province_name)
        # if not os.path.isdir(province_dir):
        #     os.mkdir(province_dir)
        # 创建CSV文件:每个城市创建一个CSV,房天下_省份_城市.csv
        file_csv = self.parent_path + '/' + province_name + '.csv'
        file = open(file_csv, 'a', encoding='utf-8', newline="")
        # 将数据写入文件中
        writer = csv.writer(file)
        writer.writerow((item['province'], item['city'], item['total_count']))
        # writer.writerow((item['province'], item['city'], item['name'],item['rooms'],
        #                  item['floor'], item['toward'], item['year'],item['address'],
        #                  item['community'], item['area'], item['price']+'万', item['unit']))
        return item
        # writer = csv.writer(self.f)
        # writer.writerow((item['province'], item['city'], item['total_count']))
        # return item

    def close_spider(self, spider):
        pass
        # self.f.close()

settings.py:

# Scrapy settings for fangtianxia_1 project
#
# For simplicity, this file contains only settings considered important or
# commonly used. You can find more settings consulting the documentation:
#
#     https://docs.scrapy.org/en/latest/topics/settings.html
#     https://docs.scrapy.org/en/latest/topics/downloader-middleware.html
#     https://docs.scrapy.org/en/latest/topics/spider-middleware.html

BOT_NAME = 'fangtianxia_1'

SPIDER_MODULES = ['fangtianxia_1.spiders']
NEWSPIDER_MODULE = 'fangtianxia_1.spiders'


# Crawl responsibly by identifying yourself (and your website) on the user-agent
# USER_AGENT = 'fangtianxia_1 (+http://www.yourdomain.com)'


# Obey robots.txt rules
ROBOTSTXT_OBEY = False

# Configure maximum concurrent requests performed by Scrapy (default: 16)
#CONCURRENT_REQUESTS = 32

# Configure a delay for requests for the same website (default: 0)
# See https://docs.scrapy.org/en/latest/topics/settings.html#download-delay
# See also autothrottle settings and docs
#DOWNLOAD_DELAY = 3
# The download delay setting will honor only one of:
#CONCURRENT_REQUESTS_PER_DOMAIN = 16
#CONCURRENT_REQUESTS_PER_IP = 16

# Disable cookies (enabled by default)
COOKIES_ENABLED = False

# Disable Telnet Console (enabled by default)
#TELNETCONSOLE_ENABLED = False

# Override the default request headers:
DEFAULT_REQUEST_HEADERS = {
  'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
  'Accept-Language': 'en',
   'User-Agent': '填你自己的',
   'cookie': '填你自己的'
}

# Enable or disable spider middlewares
# See https://docs.scrapy.org/en/latest/topics/spider-middleware.html
#SPIDER_MIDDLEWARES = {
#    'fangtianxia_1.middlewares.Fangtianxia1SpiderMiddleware': 543,
#}

# Enable or disable downloader middlewares
# See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html
#DOWNLOADER_MIDDLEWARES = {
#    'fangtianxia_1.middlewares.Fangtianxia1DownloaderMiddleware': 543,
#}

# Enable or disable extensions
# See https://docs.scrapy.org/en/latest/topics/extensions.html
#EXTENSIONS = {
#    'scrapy.extensions.telnet.TelnetConsole': None,
#}

# Configure item pipelines
# See https://docs.scrapy.org/en/latest/topics/item-pipeline.html
ITEM_PIPELINES = {
   'fangtianxia_1.pipelines.Fangtianxia1Pipeline': 300,
}

# Enable and configure the AutoThrottle extension (disabled by default)
# See https://docs.scrapy.org/en/latest/topics/autothrottle.html
#AUTOTHROTTLE_ENABLED = True
# The initial download delay
#AUTOTHROTTLE_START_DELAY = 5
# The maximum download delay to be set in case of high latencies
#AUTOTHROTTLE_MAX_DELAY = 60
# The average number of requests Scrapy should be sending in parallel to
# each remote server
#AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0
# Enable showing throttling stats for every response received:
#AUTOTHROTTLE_DEBUG = False

# Enable and configure HTTP caching (disabled by default)
# See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings
#HTTPCACHE_ENABLED = True
#HTTPCACHE_EXPIRATION_SECS = 0
#HTTPCACHE_DIR = 'httpcache'
#HTTPCACHE_IGNORE_HTTP_CODES = []
#HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'

middlewares.py一般不需要动。

爬取的数据:

全国省份:

 一个省的所有城市(以安徽省为例):

 一个城市的数据(以安徽省安庆市为例):

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值