《模式识别与机器学习》 简称 PRML 开源了

本文详细介绍《模式识别与机器学习》一书,涵盖概率分布、线性模型、神经网络等核心内容,并提供Python代码资源,适合深入学习机器学习原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言


本文的原文连接是: https://blog.youkuaiyun.com/freewebsys/article/details/84847904
未经博主允许不得转载。
博主地址是:http://blog.youkuaiyun.com/freewebsys

1,关于PRML


《Pattern Recognition and Machine Learning》,中文译名《模式识别与机器学习》,简称 PRML。出自微软剑桥研究院实验室主任 Christopher Bishop 大神之手。

  • 第一章 介绍
  • 第二章 概率分布
  • 第三章 线性回归模型
  • 第四章 线性分类模型
  • 第五章 神经网络
  • 第六章 内核方法
  • 第七章 稀疏内核机器
  • 第八章 图形模型
  • 第九章 混合模型和EM
  • 第十章 近似推断
  • 第十一章 采样方法
  • 第十二章 连续潜在变量
  • 第十三章 顺序数据
  • 第十四章 组合模型

这本书的官网为:
https://www.microsoft.com/en-us/research/people/cmbishop/#!prml-book

全书完整的 pdf 下载地址为:

https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf

还有中文版本的pdf 文件下载:
http://blog.sina.com.cn/s/blog_c3b6050b0102xfen.html

https://github.com/ctgk/PRML

notebook 代码:
https://github.com/ctgk/PRML/tree/master/notebooks

2,安装


需要使用 python3.6 以上的版本才行。

py3.5.egg\prml\feature_extractions\autoencoder.py", line 11
self.parameter[f"w_encode{i}"] = nn.Parameter(np.random.randn(args[i], args[i + 1]))
^

3.5 的版本是不行的。必须使用3.6 的版本
https://github.com/ctgk/PRML/issues/4

python3 setup.py build

这里使用docker 镜像跑。本来打算使用 TensorFlow 的官方镜像。
但是那个是python 3.5的升级了也是3.5 的。
改使用 jupyter的镜像。也是TensorFlow 版本。
https://hub.docker.com/r/jupyter/tensorflow-notebook/

docker pull jupyter/tensorflow-notebook

docker run -itd --name tf -v ~/pythonWorkspace:/home/jovyan -p 8888:8888 \
	jupyter/tensorflow-notebook:latest

pythonWorkspace 是我的python工程。

docker exec -it tf bash
# cd PRML
# python3 setup.py install

没有任何报错,看来就是版本的问题。

在这里插入图片描述
本身的notebook 需要安装 prml 包。

显示运行数据:

然后全部的notebook 就可以运行了。
还是docker 好。搭建环境超级方便,超级快。

3,总结


PRML 是不错的学习资料。
从原理上学习。慢慢看代码。上面的好多的代码都是可以使用的呢。

本文的原文连接是:
https://blog.youkuaiyun.com/freewebsys/article/details/84847904

博主地址是:http://blog.youkuaiyun.com/freewebsys

The dramatic growth in practical applications for machine learning over the last ten years has been accompanied by many important developments in the underlying algorithms and techniques. For example, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic techniques. The practical applicability of Bayesian methods has been greatly enhanced by the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation, while new models based on kernels have had a significant impact on both algorithms and applications., This completely new textbook reflects these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory., The book is suitable for courses on machine learning, statistics, computer science, signal processing, computer vision, data mining, and bioinformatics. Extensive support is provided for course instructors, including more than 400 exercises, graded according to difficulty. Example solutions for a subset of the exercises are available from the book web site, while solutions for the remainder can be obtained by instructors from the publisher. The book is supported by a great deal of additional material, and the reader is encouraged to visit the book web site for the latest information.
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值