有限差分时间域(FDTD)算法的理论与实践
1. 理论基础
1.1 泰勒级数收敛性
泰勒级数的收敛性取决于时间间隔 $h$ 的值以及导数的特性。对于一个正弦波形 $f(x) = \sin(\frac{2\pi x}{\lambda})$,其前六个空间导数如下:
- $\frac{\partial f(x)}{\partial x} = \frac{2\pi}{\lambda}\cos(\frac{2\pi x}{\lambda})$
- $\frac{\partial^2 f(x)}{\partial x^2} = -(\frac{2\pi}{\lambda})^2\sin(\frac{2\pi x}{\lambda})$
- $\frac{\partial^3 f(x)}{\partial x^3} = -(\frac{2\pi}{\lambda})^3\cos(\frac{2\pi x}{\lambda})$
- $\frac{\partial^4 f(x)}{\partial x^4} = (\frac{2\pi}{\lambda})^4\sin(\frac{2\pi x}{\lambda})$
- $\frac{\partial^5 f(x)}{\partial x^5} = (\frac{2\pi}{\lambda})^5\cos(\frac{2\pi x}{\lambda})$
- $\frac{\partial^6 f(x)}{\partial x^6} = -(\frac{2\pi}{\lambda})^6\sin(\frac{2\pi x}{\lambda})$
当选择点 $x = \frac{\l
超级会员免费看
订阅专栏 解锁全文
113

被折叠的 条评论
为什么被折叠?



