基于代码的签名方案的高效攻击
1. 矩阵选择与签名生成
在相关方案中,矩阵的选择有着特定的规则。其中,矩阵 $G$ 被选为一个 $k_0p × n_0p$ 的矩阵,它由大小为 $p$ 的稀疏循环块 $C_{i,j}$ 组成,并且 $G$ 的所有行的权重都为 $w_G$,其形式如下:
[
G =
\begin{pmatrix}
C_{0,0} & C_{0,1} & C_{0,2} & \cdots & C_{0,n_0 - 1} \
C_{1,0} & C_{1,1} & C_{1,2} & \cdots & C_{1,n_0 - 1} \
C_{2,0} & C_{2,1} & C_{2,2} & \cdots & C_{2,n_0 - 1} \
\vdots & \vdots & \vdots & \ddots & \vdots \
C_{k_0 - 1,0} & C_{k_0 - 1,1} & C_{k_0 - 1,2} & \cdots & C_{k_0 - 1,n_0 - 1}
\end{pmatrix}
]
在所有建议的参数中,$m_T$ 被选为等于 1,即 $T$ 是一个置换矩阵,并且 $T$ 也由大小为 $p × p$ 的循环块组成,也就是准循环置换。矩阵 $R$ 也采用块循环形式,其定义为:
[
R = (a_{r_0}^T b_{r_0}) \otimes 1_{p×p}
]
其中 $r_0 \
超级会员免费看
订阅专栏 解锁全文
1万+

被折叠的 条评论
为什么被折叠?



