19、乐谱渲染为 MIDI 文件及可变动态与速度的实现

乐谱渲染为 MIDI 文件及可变动态与速度的实现

1. 乐谱映射到 MIDI 文件

将乐谱转换为 MIDI 文件的目标是设计一种算法,以便使用数字音频工作站(DAW)或其他 MIDI 应用程序在计算机上播放音乐。这涉及分析乐谱的各个组件如何映射到 MIDI 或 MIDI 文件的概念,具体包括以下几个方面:
- 映射问题
- 如何将声部映射到音轨?
- 如何将乐器映射到通道?
- 如何将音符转换为 MIDI 消息?
- 如何在 MIDI 消息中添加音符速度?
- 解决方案 :将每个乐谱的乐器声部映射到一个通道,每个乐器声部的每个声部都有一个与该乐器声部通道关联的唯一 MIDI 音轨。这样可以将通道数量保持在最低限度,因为 MIDI 只有 16 个通道。
- 音符转换过程 :对于每个乐器声部的每个声部,获取该声部中的所有音符,按起始位置排序,然后将它们转换为与每个声部关联的音轨的 MIDI 消息。

2. 时间转换

MIDI 使用与速度无关的时间测量单位“节拍”(ticks)。MIDI 文件有一个全音符时间转换因子“ticks_per_beat”,通常为 480,表示每四分音符的节拍数。MIDI 速度以每四分音符的微秒数来衡量。
- 全音符时间到 MIDI 节拍的转换 :假设以四分音符为节拍,转换公式为 (T = t\times\frac{1}{4}\times tpb = 4\times t\times tpb),其中 (t) 是全音符时间量,(T

课程设计报告:总体方案设计说明 一、软件开发环境配置 本系统采用C++作为核心编程语言,结合Qt 5.12.7框架进行图形用户界面开发。数据库管理系统选用MySQL,用于存储用户数据小精灵信息。集成开发环境为Qt Creator,操作系统平台为Windows 10。 二、窗口界面架构设计 系统界面由多个功能模块构成,各模块职责明确,具体如下: 1. 起始界面模块(Widget) 作为应用程序的入口界面,提供初始导航功能。 2. 身份验证模块(Login) 负责处理用户登录账户注册流程,实现身份认证机制。 3. 游戏主大厅模块(Lobby) 作为用户登录后的核心交互区域,集成各项功能入口。 4. 资源管理模块(BagWidget) 展示用户持有的全部小精灵资产,提供可视化资源管理界面。 5. 精灵详情模块(SpiritInfo) 呈现选定小精灵的完整属性数据状态信息。 6. 用户名录模块(UserList) 系统内所有注册用户的基本信息列表展示界面。 7. 个人资料模块(UserInfo) 显示当前用户的详细账户资料历史数据统计。 8. 服务器精灵选择模块(Choose) 对战准备阶段,从服务器可用精灵池中选取参战单位的专用界面。 9. 玩家精灵选择模块(Choose2) 对战准备阶段,从玩家自有精灵库中筛选参战单位的操作界面。 10. 对战演算模块(FightWidget) 实时模拟精灵对战过程,动态呈现战斗动画状态变化。 11. 对战结算模块(ResultWidget) 对战结束后,系统生成并展示战斗结果报告数据统计。 各模块通过统一的事件驱动机制实现数据通信状态同步,确保系统功能的连贯性数据一致性。界面布局遵循模块化设计原则,采用响应式视觉方案适配不同显示环境。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
D3.js作为一种基于JavaScript的数据可视化框架,通过数据驱动的方式实现对网页元素的动态控制,广泛应用于网络结构的图形化呈现。在交互式网络拓扑可视化应用中,该框架展现出卓越的适应性功能性,能够有效处理各类复杂网络数据的视觉表达需求。 网络拓扑可视化工具借助D3.js展示节点间的关联结构。其中,节点对应于网络实体,连线则表征实体间的交互关系。这种视觉呈现模式有助于用户迅速把握网络整体架构。当数据发生变化时,D3.js支持采用动态布局策略重新计算节点分布,从而保持信息呈现的清晰度逻辑性。 网络状态监测界面是该工具的另一个关键组成部分,能够持续反映各连接通道的运行指标,包括传输速度、响应时间及带宽利用率等参数。通过对这些指标的持续追踪,用户可以及时评估网络性能状况并采取相应优化措施。 实时数据流处理机制是提升可视化动态效果的核心技术。D3.js凭借其高效的数据绑定特性,将连续更新的数据流同步映射至图形界面。这种即时渲染方式不仅提升了数据处理效率,同时改善了用户交互体验,确保用户始终获取最新的网络状态信息。 分层拓扑展示功能通过多级视图呈现网络的层次化特征。用户既可纵览全局网络架构,也能聚焦特定层级进行细致观察。各层级视图支持展开或收起操作,便于用户开展针对性的结构分析。 可视化样式定制系统使用户能够根据实际需求调整拓扑图的视觉表现。从色彩搭配、节点造型到整体布局,所有视觉元素均可进行个性化设置,以实现最优的信息传达效果。 支持拖拽缩放操作的交互设计显著提升了工具的使用便利性。用户通过简单的视图操控即可快速浏览不同尺度的网络结构,这一功能降低了复杂网络系统的认知门槛,使可视化工具更具实用价值。 综上所述,基于D3.js开发的交互式网络拓扑可视化系统,整合了结构展示、动态布局、状态监控、实时数据处理、分层呈现及个性化配置等多重功能,形成了一套完整的网络管理解决方案。该系统不仅协助用户高效管理网络资源,还能提供持续的状态监测深度分析能力,在网络运维领域具有重要应用价值。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
代码转载自:https://pan.quark.cn/s/74eb7b5f49ba DIPm 一个使用MATLAB App Designer开发的简单数字图像处理APP 图像处理函数 自动调整 降噪 :二维自适应去噪滤波 基于图像的局部统计特性来估计噪声方差,并根据噪声的特性进行滤波。 这种滤波方法通常在存在噪声的图像中能够有效地减少噪声并保持图像的细节。 伽马校正 :将线性 RGB 值应用伽马校正,使其转换为适合显示的 sRGB 色彩空间。 对图像中的像素值进行非线性变换,使较暗区域的细节更加可见,同时保持较亮区域的细节不被过度压缩。 这样可以增强图像的对比度,使其在显示时更加生动和自然。 自动白平衡 当人们用眼晴观察自然世界时,在不同的光线下,对相同颜色的感觉基本是相同的,大脑已经对不同光线下的物体的彩色还原有了适应性。 这种现象称为颜色恒常性。 不幸的是,CMOS或CCD等感光器件没有这样的适应能力。 为了使得摄像机也具有颜色恒常性能力,需要使用白平衡技术。 所谓白平衡(WiteBalance),简单地说就是去除环境光的影响,还原物体真实的颜色,把不同色温下的白颜色调整正确。 从理论上说白颜色调整正确了,其他色彩就都准确了。 即在红色灯光照射下,白色物体依然呈白色,在蓝色灯光照射下也呈现白色。 灰度世界算法以灰度世界假设为基础,该假设认为:对于一幅有着大量色彩变化的图像,其R,G,B 三个色彩分量的平均值趋于同一灰度值 K。 从物理意义上讲,灰色世界法假设自然界景物对于光线的平均反射的均值在总体上是个定值,这个定值近似地为“灰色”。 颜色平衡算法将这一假设强制应用于待处理图像,可以从图像中消除环境光的影响,获得原始场景图像。 自动对比度增强 MATLAB中有三个函数适用...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值