函数极限
1.方法:等价代换,洛必达法则,泰勒公式,导数定义,拉格朗日中值定理
2.技巧:加减中把极限存在(不管是否为0)的部分拆项先算出来
乘除中把极限存在(必须不为0)的部分分离先算出来
**对 或 且 带 x → ∞ ( 或 + ∞ , − ∞ ) 且 带 1 x 或且带x\to\infty(或+\infty,-\infty)且带\frac1x 或且带x→∞(或+∞,−∞)且带x1**的极限采用倒代换、抓大头、有理化、通分等
等 价 无 穷 小 x − s i n x ∼ 1 6 x 3 x − a r c s i n x ∼ − 1 6 x 3 x − t a n x ∼ − 1 3 x 3 x − a r c t a n x ∼ 1 3 x 3 x − ln ( 1 + x ) ∼ 1 2 x 2 t a n x − s i n x ∼ 1 2 x 3 1 − c o s α x ∼ α 2 x 2 e x − 1 − x ∼ 1 2 x 2 1 + x − 1 − 1 2 x ∼ − 1 8 x 2 f ( x ) → 1 时 , ln f ( x ) ∼ f ( x ) − 1 等价无穷小\\ x-sinx \sim\frac16x^3\qquad x-arcsinx\sim-\frac16x^3\qquad x-tanx\sim-\frac13x^3\\ x-arctanx\sim\frac13x^3\qquad x-\ln(1+x)\sim\frac12x^2\qquad tanx-sinx\sim\frac12x^3\\ 1-cos^\alpha x\sim\frac\alpha2x^2\qquad e^x-1-x\sim\frac12x^2\qquad\sqrt{1+x}-1-\frac12x\sim-\frac18x^2\\ f(x)\to1时,\ln f(x)\sim f(x)-1 等价无穷小x−sinx∼61x3x−arcsinx∼−61x3x−tanx∼−31x3x−arctanx∼31x3x−ln(1+x)∼21x2tanx−sinx∼21x31−cosαx∼2αx2ex−1−x∼21x21+x−1−21x∼−81x2f(x)→1时,lnf(x)∼f(x)−1
题目
1. lim x → 0 1 + x − 1 − x 2 e x 2 − 1 2. lim x → 0 e x + ln ( 1 − x ) − 1 x − a r c t a n x 3. lim x → 0 ( 1 + x ) 2 x − e 2 [ 1 − ln ( 1 + x ) ] x 4. lim x → 0 ( 1 + x 2 ) ( 1 − c o s 2 x ) − 2 x 2 x 4 5. lim x → 0 1 − x 2 s i n 2 x − t a n 2 x x 2 [ ln ( 1 + x ) ] 2 6. lim x → 0 ( 3 + 2 t a n x ) x − 3 x 3 s i n 2 x + x 3 c o s 1 x 7. lim x → ∞ e − x ( 1 + 1 x ) x 2 8. lim x → ∞ x 2 ( a 1 x + a − 1 x − 2 ) , 其 中 常 数 a > 0 9. lim x → 0 ( c o s x c o s 2 x ) 1 x 2 10. lim x → ∞ ( x 6 + x 5 6 − x 6 − x 5 6 ) 11. lim x → + ∞ [ ( x 3 + x 2 − t a n 1 x ) e 1 x − 1 + x 6 ] 12. lim x → 0 s i n x + x 2 s i n 1 x ( 1 + c o s x ) ln ( 1 + x ) 13. lim x → 0 [ a x − ( 1 x 2 − a 2 ) ln ( 1 + a x ) ] . 其 中 a ≠ 0 14. lim x → 0 ( 1 + x ) 1 x − ( 1 + 2 x ) 1 2 x s i n x 15. lim x → 0 1 x 3 [ ( 2 + c o s x 3 ) x − 1 ] 16. lim x → 0 c o s x − c o s x 3 s i n 2 x 17. lim x → 0 1 − c o s x ⋅ c o s 2 x ⋅ c o s 3 x 3 x 2 18. lim x → 1 ( 1 − x 3 ) ( 1 − x 4 ) ⋯ ( 1 − x n ) ( 1 − x ) n − 2 \begin{aligned} &1.\lim_{x\to0}\frac{\sqrt{1+x}-1-\frac x2}{{e^x}^2-1}\\ &2.\lim_{x\to0}\frac{e^x+\ln(1-x)-1}{x-arctanx}\\ &3.\lim_{x\to0}\frac{(1+x)^{\frac2x}-e^2[1-\ln(1+x)]}{x}\\ &4.\lim_{x\to0}\frac{(1+x^2)(1-cos2x)-2x^2}{x^4}\\ &5.\lim_{x\to0}\frac{\sqrt{1-x^2}sin^2x-tan^2x}{x^2[\ln(1+x)]^2}\\ &6.\lim_{x\to0}\frac{(3+2tanx)^x-3^x}{3sin^2x+x^3cos\frac1x}\\ &7.\lim_{x\to\infty}e^{-x}(1+\frac1x)^{x^2}\\ &8.\lim_{x\to\infty}x^2(a^{\frac1x}+a^{-\frac1x}-2),其中常数a>0\\ &9.\lim_{x\to0}(\frac{cosx}{cos2x})^{\frac1{x^2}}\\ &10.\lim_{x\to\infty}(\sqrt[6]{x^6+x^5}-\sqrt[6]{x^6-x^5})\\ &11.\lim_{x\to+\infty}[(x^3+\frac x2-tan\frac1x)e^{\frac1x}-\sqrt{1+x^6}]\\ &12.\lim_{x\to0}\frac{sinx+x^2sin\frac1x}{(1+cosx)\ln(1+x)}\\ &13.\lim_{x\to0}[\frac ax-(\frac1{x^2}-a^2)\ln(1+ax)].其中a\neq0\\ &14.\lim_{x\to0}\frac{(1+x)^{\frac1x}-(1+2x)^{\frac1{2x}}}{sinx}\\ &15.\lim_{x\to0}\frac1{x^3}[(\frac{2+cosx}{3})^x-1]\\ &16.\lim_{x\to0}\frac{\sqrt{cosx}-\sqrt[3]{cosx}}{sin^2x}\\ &17.\lim_{x\to0}\frac{1-cosx\cdot\sqrt{cos2x}\cdot\sqrt[3]{cos3x}}{x^2}\\ &18.\lim_{x\to1}\frac{(1-\sqrt[3]{x})(1-\sqrt[4]x)\cdots(1-\sqrt[n]x)}{(1-x)^{n-2}} \end{aligned} 1.x→0limex2−11+x−1−2x2.x→0limx−arctanxex+ln(1−x)−13.x→0limx(1+x)x2−e2[1−ln(1+x)]4.x→0limx4(1+x2)(1−cos2x)−2x25.x→0limx2[ln(1+x)]21−x2sin2x−tan2x6.x→0lim3sin2x+x3cosx1(3+2tanx)x−3x7.x→∞lime−x(1+x1)x28.x→∞limx2(ax1+a−x1−2),其中常数a>09.x→0lim(cos2xcosx)x2110.x→∞lim(6x6+x5−6x6−x5)11.x→+∞lim[(x3+2x−tanx1)ex1−1+x6]12.x→0lim(1+cosx)ln(1+x)sinx+x2sinx113.x→0lim[xa−(x21−a2)ln(1+ax)].其中a̸=014.x→0limsinx(1+x)x1−(1+2x)2x115.x→0limx31[(32+cosx)x−1]16.x→0limsin2xcosx−3cosx17.x→0limx21−cosx⋅cos2x⋅3cos3x18.x→1lim(1−x)n−2(1−3x)(1−4x)⋯(1−nx)
答案
1. I = lim x → 0 − 1 8 x 2 x 2 = − 1 8 2. I = lim x → 0 e x + ln ( 1 + x ) − 1 1 3 x 3 = lim x → 0 1 + 1 2 x 2 + x + 1 6 x 3 + ∘ ( x 3 ) − x − 1 2 x 2 − 1 3 x 3 + ∘ ( x 3 ) − 1 1 3 x 3 = lim x → 0 − 1 6 x 3 1 3 x 3 = − 1 2 3. I = lim x → 0 ( 1 + x ) 2 x − e 2 x + e 2 lim x → 0 ln ( 1 + x ) x = lim x → 0 e 2 ln ( 1 + x ) / x − e 2 x + e 2 = lim x → 0 e 2 ( e 2 ln ( 1 + x ) x − 2 − 1 ) x + e 2 = lim x → 0 e ξ ( 2 ln ( 1 + x ) x − 2 ) x + e 2 = e 2 lim x → 0 2 ln ( 1 + x ) x − 2 x + e 2 = 2 e 2 lim x → 0 ln ( 1 + x ) x − 1 x + e 2 = 2 e 2 lim x → 0 ln ( 1 + x ) − x x 2 + e 2 = 2 e 2 lim x → 0 ln ( 1 + x ) − x x 2 + e 2 = ( 2 e 2 ⋅ ( − 1 2 ) ) + e 2 d = 2 e 2 lim x → 0 − 1 2 x 2 x 2 + e 2 = − e 2 + e 2 = 0 = 0 4. I = lim x → 0 1 − cos 2 x − 2 x 2 x 4 + lim x → 0 x 2 ( 1 − c o s 2 x ) x 4 = lim x → 0 1 − ( 1 − 1 2 ( 2 x ) 2 + 1 24 ( 2 x ) 4 + ∘ ( x 4 ) ) − 2 x 2 x 4 + 2 = lim x → 0 − 16 24 x 4 x 4 + 2 = 4 3 5. I = lim x → 0 1 − x 2 sin 2 x − sin 2 x + sin 2 x − tan 2 x x 4 = lim x → 0 sin x ( 1 − x 2 − 1 ) x 4 + lim x → 0 sin 2 x − tan 2 x x 4 = − 1 2 + lim x → 0 ( sin x + tan x ) ( sin x + tan ) x 4 = − 1 2 + lim x → 0 ( sin x + tan x ) ( − 1 2 x 3 ) x 4 = − 1 2 + ( − 1 2 ) ( 1 + 1 ) = − 3 2 6. 由 x 3 cos 1 x 3 sin x = 1 3 lim x → 0 x cos 1 x = 0 则 I = lim x → 0 3 x [ ( 1 + 2 3 tan x ) x − 1 ] 3 x 2 = lim x → 0 e x ln ( 1 + 2 3 tan x ) − 1 3 x 2 = lim x → 0 x ln ( 1 + 2 3 tan x ) 3 x 2 = 2 9 7. I = lim x → ∞ e − x e x 2 ln ( 1 + 1 x ) = lim x → ∞ e x 2 ln ( 1 + 1 x ) − x 且 lim x → ∞ ( x 2 ln ( 1 + 1 x ) − x ) t = 1 x → lim t → 0 ln ( 1 + t ) t 2 − 1 t = lim x → ∞ x 2 ( ln ( 1 + 1 x ) − 1 x ) = lim t → 0 ln ( 1 + t ) − t t 2 = − 1 2 = lim x → ∞ x 2 ( − 1 2 ) ( 1 x ) 2 = − 1 2 ∴ I = e − 1 2 8. 令 1 x = t I = lim t → 0 1 t 2 ( a t + a − t − 2 ) = lim t → 0 a t ln a + a − t ⋅ ln a − 1 2 t = ln 2 a 9. I = e A , 其 中 A = lim x → 0 1 x 2 ( cos x c o s 2 x − 1 ) = lim x → 0 cos x − cos 2 x x 2 cos 2 x = lim x → 0 cos x − cos 2 x x 2 = lim x → 0 cos x − 1 + 1 − cos 2 x x 2 = lim x → 0 cos x − 1 x 2 + lim x → 0 1 − cos 2 x x 2 = − 1 2 + lim x → 0 1 2 ( 2 x ) 2 x 2 = 3 2 故 I = e 3 2 10. I = lim x → ∞ f ′ ( ξ ) ( 2 x 5 ) = lim x → ∞ 1 6 ξ − 5 6 ( 2 x 5 ) = lim x → ∞ 1 6 ⋅ x 6 ( − 5 6 ) ( 2 x 5 ) = lim x → ∞ 1 6 x − 5 ( 2 x 5 ) = 1 3 11. I = lim x → + ∞ [ ( x 3 + x 2 ) e 1 x − 1 + x 6 ] − lim x → + ∞ tan 1 x ⋅ e 1 x t = 1 x → lim t → 0 + [ ( 1 t 3 + 1 2 t ) e t − 1 + 1 t 6 ] − 0 = lim t → 0 + ( 2 + t 2 ) e t − 2 1 + t 6 + 2 − 2 2 t 3 = lim t → 0 + ( 2 + t 2 ) e t − 2 2 t 3 − 2 lim t → 0 + 1 + t 6 − 1 2 t 3 = lim t → 0 + ( 2 + t 2 ) ( 1 + t + 1 2 t 2 + 1 6 t 3 + ∘ ( t 3 ) ) − 2 2 t 3 − 0 = lim t → 0 + 2 t + 2 t 2 + 4 3 t 3 2 t 3 = ∞ 12. I = lim x → 0 x 2 x = 1 2 13. I = lim x → 0 [ a x − 1 x 2 ln ( 1 + a x ) ] + a 2 lim x → 0 ln ( 1 + a x ) = lim x → 0 a x − ln ( 1 + a x ) x 2 + 0 = lim x → 0 1 2 ( a x ) 2 x 2 = 1 2 a 2 14. I = lim x → 0 e ln ( 1 + x ) / x − e ln ( 1 + 2 x ) / 2 x x = lim x → 0 e ln ( 1 + 2 x ) / 2 x ( e ln ( 1 + x ) / x − ln ( 1 + 2 x ) / 2 x − 1 ) x = e lim x → 0 ln ( 1 + x ) / x − ln ( 1 + 2 x ) / 2 x x = e lim x → 0 2 ln ( 1 + x ) − ln ( 1 + 2 x ) 2 x 2 = e ⋅ 2 ( x − 1 2 x 2 ) + ∘ ( x 2 ) − ( 2 x − 1 2 ( 2 x ) 2 ) − ∘ ( x 2 ) 2 x 2 = e ⋅ 1 2 = e 2 15. I = lim x → 0 1 x 3 [ e x ln 2 + cos x 3 − 1 ] I = lim x → 0 1 x 3 [ ( 1 + cos x − 1 3 ) x − 1 ] = lim x → 0 1 x 3 ⋅ x ln 2 + cos x 3 = lim x → 0 1 x 3 ⋅ x ⋅ cos x − 1 3 = lim x → 0 1 x 2 ln 2 + cos x 3 = − 1 6 = lim x → 0 1 x 2 ln ( 1 + 2 + cos x 3 − 1 ) = lim x → 0 1 x 2 ( 2 + cos x 3 − 1 ) = lim x → 0 cos x − 1 3 x 2 = − 1 6 16. I = lim x → 0 cos x − 1 + 1 − cos x 3 x 2 = lim x → 0 cos x − 1 x 2 + lim x → 0 1 − cos x 3 x 2 = lim x → 0 − 1 4 x 2 x 2 + lim x → 0 1 6 x 2 x 2 = − 1 12 17. I = lim x → 0 1 − cos x + cos x − cos x cos 2 x c o s 3 x 3 x 2 = lim x → 0 1 − cos x x 2 + cos x − cos x cos 2 x cos 3 x 3 x 2 = 1 2 + lim x → 0 cos x ( 1 − cos 2 x cos 3 x 3 ) x 2 = 1 2 + lim x → 0 1 − cos 2 x + cos 2 x ( 1 − cos 3 x 3 ) x 2 = 3 18. lim x → 1 1 − x t 1 − x ( t = 3 , 4 , 5 , ⋯   , n ) = lim x → 1 − 1 t x 1 t − 1 − 1 = 1 t I = 1 3 ⋅ 1 4 ⋯ 1 n = 2 n ! \begin{aligned} 1.I&=\lim_{x\to0}\frac{-\frac18x^2}{x^2}=-\frac18\\ 2.I&=\lim_{x\to0}\frac{e^x+\ln(1+x)-1}{\frac13x^3}\\ &=\lim_{x\to0}\frac{1+\frac12x^2+x+\frac16x^3+\circ(x^3)-x-\frac12x^2-\frac13x^3+\circ(x^3)-1}{\frac13x^3}\\ &=\lim_{x\to0}\frac{-\frac16x^3}{\frac13x^3}=-\frac12\\ 3.I&=\lim_{x\to0}\frac{(1+x)^{\frac2x}-e^2}{x}+e^2\lim_{x\to0}\frac{\ln(1+x)}{x}\\ &=\lim_{x\to0}\frac{e^{2\ln(1+x)/x}-e^2}{x}+e^2\\ &=\lim_{x\to0}\frac{e^2(e^{\frac{2\ln(1+x)}{x}-2}-1)}{x}+e^2 \qquad\qquad=\lim_{x\to0}\frac{e^\xi(\frac{2\ln(1+x)}x-2)}{x}+e^2\\ &=e^2\lim_{x\to0}\frac{\frac{2\ln(1+x)}{x}-2}{x}+e^2 \qquad\qquad=2e^2\lim_{x\to0}\frac{\frac{\ln(1+x)}{x}-1}{x}+e^2\\ &=2e^2\lim_{x\to0}\frac{\ln(1+x)-x}{x^2}+e^2 \qquad\qquad=2e^2\lim_{x\to0}\frac{\ln(1+x)-x}{x^2}+e^2\\ &=(2e^2\cdot(-\frac12))+e^2d \qquad\qquad=2e^2\lim_{x\to0}\frac{-\frac12x^2}{x^2}+e^2\\ &=-e^2+e^2=0\qquad \qquad\qquad=0\\ 4.I&=\lim_{x\to0}\frac{1-\cos2x-2x^2}{x^4}+\lim_{x\to0}\frac{x^2(1-cos2x)}{x^4}\\ &=\lim_{x\to0}\frac{1-(1-\frac12(2x)^2+\frac1{24}(2x)^4+\circ(x^4))-2x^2}{x^4}+2\\ &=\lim_{x\to0}\frac{-\frac{16}{24}x^4}{x^4}+2=\frac43\\ 5.I&=\lim_{x\to0}\frac{\sqrt{1-x^2}\sin^2x-\sin^2x+\sin^2x-\tan^2x}{x^4}\\ &=\lim_{x\to0}\frac{\sin^x(\sqrt{1-x^2}-1)}{x^4}+\lim_{x\to0}\frac{\sin^2x-\tan^2x}{x^4}\\ &=-\frac12+\lim_{x\to0}\frac{(\sin x+\tan x)(\sin x+\tan )}{x^4}\\ &=-\frac12+\lim_{x\to0}\frac{(\sin x+\tan x)(-\frac12x^3)}{x^4}\\ &=-\frac12+(-\frac12)(1+1)=-\frac32\\ 6.&由\frac{x^3\cos\frac1x}{3\sin^x}=\frac13\lim_{x\to0}x\cos\frac1x=0\\ &则I=\lim_{x\to0}\frac{3^x[(1+\frac23\tan x)^x-1]}{3x^2}\\ &=\lim_{x\to0}\frac{e^{x\ln(1+\frac23\tan x)}-1}{3x^2}\\ &=\lim_{x\to0}\frac{x\ln(1+\frac23\tan x)}{3x^2}=\frac29\\ 7.I&=\lim_{x\to\infty}e^{-x}e^{x^2\ln(1+\frac1x)}\\ &=\lim_{x\to\infty}e^{x^2\ln(1+\frac1x)-x}\\ &且\lim_{x\to\infty}(x^2\ln(1+\frac1x)-x)\\ &\underrightarrow{t=\frac1x}\lim_{t\to0}\frac{\ln(1+t)}{t^2}-\frac1t \qquad\qquad=\lim_{x\to\infty}x^2(\ln(1+\frac1x)-\frac1x)\\ &=\lim_{t\to0}\frac{\ln(1+t)-t}{t^2}=-\frac12 \qquad\qquad=\lim_{x\to\infty}x^2(-\frac12)(\frac1x)^2=-\frac12\\ &\therefore I=e^{-\frac12}\\ 8.&令\frac1x=t\\ I&=\lim_{t\to0}\frac1{t^2}(a^t+a^{-t}-2)\\ &=\lim_{t\to0}\frac{a^t\ln a+a^{-t}\cdot\ln a^{-1}}{2t}\\ &=\ln^2a\\ 9.I&=e^A,其中A=\lim_{x\to0}\frac1{x^2}(\frac{\cos x}{cos2x}-1)\\ &=\lim_{x\to0}\frac{\cos x-\cos2x}{x^2\cos2x}\\ &=\lim_{x\to0}\frac{\cos x-\cos2x}{x^2}\\ &=\lim_{x\to0}\frac{\cos x-1+1-\cos2x}{x^2}\\ &=\lim_{x\to0}\frac{\cos x-1}{x^2}+\lim_{x\to0}\frac{1-\cos2x}{x^2}\\ &=-\frac12+\lim_{x\to0}\frac{\frac12(2x)^2}{x^2}\\ &=\frac32\quad 故I=e^{\frac32}\\ 10.I&=\lim_{x\to\infty}f'(\xi)(2x^5)\\ &=\lim_{x\to\infty}\frac16\xi^{-\frac56}(2x^5)\\ &=\lim_{x\to\infty}\frac16\cdot x^{6(-\frac56)}(2x^5)\\ &=\lim_{x\to\infty}\frac16x^{-5}(2x^5)=\frac13\\ 11.I&=\lim_{x\to+\infty}[(x^3+\frac x2)e^{\frac1x}-\sqrt{1+x^6}]-\lim_{x\to+\infty}\tan\frac1x\cdot e^{\frac1x}\\ &\underrightarrow{t=\frac1x}\lim_{t\to0^+}[(\frac1{t^3}+\frac1{2t})e^t-\sqrt{1+\frac1{t^6}}]-0\\ &=\lim_{t\to0^+}\frac{(2+t^2)e^t-2\sqrt{1+t^6}+2-2}{2t^3}\\ &=\lim_{t\to0^+}\frac{(2+t^2)e^t-2}{2t^3}-2\lim_{t\to0^+}\frac{\sqrt{1+t^6}-1}{2t^3}\\ &=\lim_{t\to0^+}\frac{(2+t^2)(1+t+\frac12t^2+\frac16t^3+\circ(t^3))-2}{2t^3}-0\\ &=\lim_{t\to0^+}\frac{2t+2t^2+\frac43t^3}{2t^3}=\infty\\ 12.I&=\lim_{x\to0}\frac{x}{2x}=\frac12\\ 13.I&=\lim_{x\to0}[\frac ax-\frac1{x^2}\ln(1+ax)]+a^2\lim_{x\to0}\ln(1+ax)\\ &=\lim_{x\to0}\frac{ax-\ln(1+ax)}{x^2}+0\\ &=\lim_{x\to0}\frac{\frac12(ax)^2}{x^2}=\frac12a^2\\ 14.I&=\lim_{x\to0}\frac{e^{\ln(1+x)/x}-e^{\ln(1+2x)/2x}}{x}\\ &=\lim_{x\to0}\frac{e^{\ln(1+2x)/2x}(e^{\ln(1+x)/x-\ln(1+2x)/2x}-1)}x\\ &=e\lim_{x\to0}\frac{\ln(1+x)/x-\ln(1+2x)/2x}{x}\\ &=e\lim_{x\to0}\frac{2\ln(1+x)-\ln(1+2x)}{2x^2}\\ &=e\cdot\frac{2(x-\frac12x^2)+\circ(x^2)-(2x-\frac12(2x)^2)-\circ(x^2)}{2x^2}\\ &=e\cdot\frac12=\frac e2\\ 15.I&=\lim_{x\to0}\frac1{x^3}[e^{x\ln\frac{2+\cos x}{3}}-1]\qquad\qquad I=\lim_{x\to0}\frac1{x^3}[(1+\frac{\cos x-1}{3})^x-1]\\ &=\lim_{x\to0}\frac1{x^3}\cdot x\ln{\frac{2+\cos x}{3}} \qquad\qquad =\lim_{x\to0}\frac1{x^3}\cdot x\cdot \frac{\cos x-1}3\\ &=\lim_{x\to0}\frac1{x^2}\ln{\frac{2+\cos x}3} \qquad\qquad =-\frac16\\ &=\lim_{x\to0}\frac1{x^2}\ln(1+\frac{2+\cos x}{3}-1)\\ &=\lim_{x\to0}\frac1{x^2}(\frac{2+\cos x}3-1)\\ &=\lim_{x\to0}\frac{\cos x-1}{3x^2}=-\frac16\\ 16.I&=\lim_{x\to0}\frac{\sqrt{\cos x}-1+1-\sqrt[3]{\cos x}}{x^2}\\ &=\lim_{x\to0}\frac{\sqrt{\cos x}-1}{x^2}+\lim_{x\to0}\frac{1-\sqrt[3]{\cos x}}{x^2}\\ &=\lim_{x\to0}\frac{-\frac14x^2}{x^2}+\lim_{x\to0}\frac{\frac16x^2}{x^2}\\ &=-\frac1{12}\\ 17.I&=\lim_{x\to0}\frac{1-\cos x+\cos x-\cos x\sqrt{\cos2x}\sqrt[3]{cos3x}}{x^2}\\ &=\lim_{x\to0}\frac{1-\cos x}{x^2}+\frac{\cos x-\cos x\sqrt{\cos2x}\sqrt[3]{\cos3x}}{x^2}\\ &=\frac12+\lim_{x\to0}\frac{\cos x(1-\sqrt{\cos2x}\sqrt[3]{\cos3x})}{x^2}\\ &=\frac12+\lim_{x\to0}\frac{1-\sqrt{\cos2x}+\sqrt{\cos2x}(1-\sqrt[3]{\cos3x})}{x^2}\\ &=3\\ 18.&\lim_{x\to1}\frac{1-\sqrt[t]{x}}{1-x}(t=3,4,5,\cdots,n)\\ &=\lim_{x\to1}\frac{-\frac1tx^{\frac1t-1}}{-1}=\frac1t\\ I&=\frac13\cdot\frac14\cdots\frac1n=\frac2{n!}\\ \end{aligned} 1.I2.I3.I4.I5.I6.7.I8.I9.I10.I11.I12.I13.I14.I15.I16.I17.I18.I=x→0limx2−81x2=−81=x→0lim31x3ex+ln(1+x)−1=x→0lim31x31+21x2+x+61x3+∘(x3)−x−21x2−31x3+∘(x3)−1=x→0lim31x3−61x3=−21=x→0limx(1+x)x2−e2+e2x→0limxln(1+x)=x→0limxe2ln(1+x)/x−e2+e2=x→0limxe2(ex2ln(1+x)−2−1)+e2=x→0limxeξ(x2ln(1+x)−2)+e2=e2x→0limxx2ln(1+x)−2+e2=2e2x→0limxxln(1+x)−1+e2=2e2x→0limx2ln(1+x)−x+e2=2e2x→0limx2ln(1+x)−x+e2=(2e2⋅(−21))+e2d=2e2x→0limx2−21x2+e2=−e2+e2=0=0=x→0limx41−cos2x−2x2+x→0limx4x2(1−cos2x)=x→0limx41−(1−21(2x)2+241(2x)4+∘(x4))−2x2+2=x→0limx4−2416x4+2=34=x→0limx41−x2sin2x−sin2x+sin2x−tan2x=x→0limx4sinx(1−x2−1)+x→0limx4sin2x−tan2x=−21+x→0limx4(sinx+tanx)(sinx+tan)=−21+x→0limx4(sinx+tanx)(−21x3)=−21+(−21)(1+1)=−23由3sinxx3cosx1=31x→0limxcosx1=0则I=x→0lim3x23x[(1+32tanx)x−1]=x→0lim3x2exln(1+32tanx)−1=x→0lim3x2xln(1+32tanx)=92=x→∞lime−xex2ln(1+x1)=x→∞limex2ln(1+x1)−x且x→∞lim(x2ln(1+x1)−x)t=x1t→0limt2ln(1+t)−t1=x→∞limx2(ln(1+x1)−x1)=t→0limt2ln(1+t)−t=−21=x→∞limx2(−21)(x1)2=−21∴I=e−21令x1=t=t→0limt21(at+a−t−2)=t→0lim2tatlna+a−t⋅lna−1=ln2a=eA,其中A=x→0limx21(cos2xcosx−1)=x→0limx2cos2xcosx−cos2x=x→0limx2cosx−cos2x=x→0limx2cosx−1+1−cos2x=x→0limx2cosx−1+x→0limx21−cos2x=−21+x→0limx221(2x)2=23故I=e23=x→∞limf′(ξ)(2x5)=x→∞lim61ξ−65(2x5)=x→∞lim61⋅x6(−65)(2x5)=x→∞lim61x−5(2x5)=31=x→+∞lim[(x3+2x)ex1−1+x6]−x→+∞limtanx1⋅ex1t=x1t→0+lim[(t31+2t1)et−1+t61]−0=t→0+lim2t3(2+t2)et−21+t6+2−2=t→0+lim2t3(2+t2)et−2−2t→0+lim2t31+t6−1=t→0+lim2t3(2+t2)(1+t+21t2+61t3+∘(t3))−2−0=t→0+lim2t32t+2t2+34t3=∞=x→0lim2xx=21=x→0lim[xa−x21ln(1+ax)]+a2x→0limln(1+ax)=x→0limx2ax−ln(1+ax)+0=x→0limx221(ax)2=21a2=x→0limxeln(1+x)/x−eln(1+2x)/2x=x→0limxeln(1+2x)/2x(eln(1+x)/x−ln(1+2x)/2x−1)=ex→0limxln(1+x)/x−ln(1+2x)/2x=ex→0lim2x22ln(1+x)−ln(1+2x)=e⋅2x22(x−21x2)+∘(x2)−(2x−21(2x)2)−∘(x2)=e⋅21=2e=x→0limx31[exln32+cosx−1]I=x→0limx31[(1+3cosx−1)x−1]=x→0limx31⋅xln32+cosx=x→0limx31⋅x⋅3cosx−1=x→0limx21ln32+cosx=−61=x→0limx21ln(1+32+cosx−1)=x→0limx21(32+cosx−1)=x→0lim3x2cosx−1=−61=x→0limx2cosx−1+1−3cosx=x→0limx2cosx−1+x→0limx21−3cosx=x→0limx2−41x2+x→0limx261x2=−121=x→0limx21−cosx+cosx−cosxcos2x3cos3x=x→0limx21−cosx+x2cosx−cosxcos2x3cos3x=21+x→0limx2cosx(1−cos2x3cos3x)=21+x→0limx21−cos2x+cos2x(1−3cos3x)=3x→1lim1−x1−tx(t=3,4,5,⋯,n)=x→1lim−1−t1xt1−1=t1=31⋅41⋯n1=n!2
数列极限
1.方法:转化为函数极限(求导、洛必达、拉格朗日中值定理),先求和(积)、夹逼准则、定积分定义、单调有界法则
2.技巧:夹逼准则的套路,单调有界的套路,先求极限再证明的套路
3.总结:数列的构造法
题目
部分题目之前已总结,请去数列极限查看。
1.
lim
n
→
∞
n
3
(
s
i
n
1
n
−
1
2
s
i
n
2
n
)
2.
lim
n
→
∞
n
2
(
a
r
c
t
a
n
a
n
−
a
r
c
t
a
n
a
n
+
1
)
,
a
>
0
3.
lim
n
→
∞
n
99
n
k
−
(
n
−
1
)
k
存
在
且
不
为
0
,
则
常
数
k
=
‾
\begin{aligned} &1.\lim_{n\to\infty}n^3(sin\frac1n-\frac12sin\frac2n)\\ &2.\lim_{n\to\infty}n^2(arctan\frac an-arctan\frac a{n+1}),a>0\\ &3.\lim_{n\to\infty}\frac{n^{99}}{n^k-(n-1)^k}存在且不为0,则常数k=\underline{\qquad}\\ \end{aligned}
1.n→∞limn3(sinn1−21sinn2)2.n→∞limn2(arctanna−arctann+1a),a>03.n→∞limnk−(n−1)kn99存在且不为0,则常数k=
答案
1. I = lim n → ∞ n 3 ( sin 1 n − 1 2 sin 2 n ) = lim n → ∞ n 3 ( sin 1 n − 1 n ) + lim n → ∞ n 3 ( 1 n − 1 2 sin 2 n ) = − 1 6 + lim n → ∞ 1 2 ⋅ n 3 ( 2 n − sin f r a c 2 n ) = 1 2 2. I = lim n → ∞ n 2 ( f ′ ( ξ ) ⋅ ( a n − a n + 1 ) ) = lim n → ∞ n 2 ⋅ 1 1 + ξ 2 ( a n − a n + 1 ) = lim n → ∞ a ( n + 1 ) − a n n ( n + 1 ) ⋅ n 2 = a 3. I = lim n → ∞ n 99 n k ( 1 − ( 1 − 1 n ) k ) = lim n → ∞ n 99 n k ( − k ) ( − 1 n ) = lim n → ∞ n 99 k n k − 1 = c ≠ 0    ⟹    k − 1 = 99 \begin{aligned} 1.I&=\lim_{n\to\infty}n^3(\sin{\frac1n}-\frac12\sin{\frac2n})\\ &=\lim_{n\to\infty}n^3(\sin{\frac1n}-\frac1n)+\lim_{n\to\infty}n^3(\frac1n-\frac12\sin{\frac2n})\\ &=-\frac16+\lim_{n\to\infty}\frac12\cdot n^3(\frac2n-\sin{frac2n})\\ &=\frac12\\ 2.I&=\lim_{n\to\infty}n^2(f'(\xi)\cdot(\frac an-\frac a{n+1}))\\ &=\lim_{n\to\infty}n^2\cdot\frac1{1+{\xi}^2}(\frac an-\frac a{n+1})\\ &=\lim_{n\to\infty}\frac{a(n+1)-an}{n(n+1)}\cdot n^2=a\\ 3.I&=\lim_{n\to\infty}\frac{n^{99}}{n^k(1-(1-\frac1n)^k)}\\ &=\lim_{n\to\infty}\frac{n^{99}}{n^k(-k)(-\frac1n)}\\ &=\lim_{n\to\infty}\frac{n^{99}}{kn^{k-1}}=c\neq0\implies k-1=99\\ \end{aligned} 1.I2.I3.I=n→∞limn3(sinn1−21sinn2)=n→∞limn3(sinn1−n1)+n→∞limn3(n1−21sinn2)=−61+n→∞lim21⋅n3(n2−sinfrac2n)=21=n→∞limn2(f′(ξ)⋅(na−n+1a))=n→∞limn2⋅1+ξ21(na−n+1a)=n→∞limn(n+1)a(n+1)−an⋅n2=a=n→∞limnk(1−(1−n1)k)n99=n→∞limnk(−k)(−n1)n99=n→∞limknk−1n99=c̸=0⟹k−1=99
导数计算
题目
1. 设 y = e x 2 , 求 d y d x , d y d ( x 2 ) , d 2 y d x 2 2. 设 f ( x ) = ( c o s x − 4 ) s i n x + 3 x , 求 d f ( x ) d ( x 2 ) 3. 设 f ′ ( 0 ) = 1 , f ′ ′ ( 0 ) = 0 , 求 证 : 在 x = 0 处 , 有 d 2 d x 2 f ( x 2 ) = d 2 d x 2 f 2 ( x ) 4. 已 知 可 微 函 数 y = y ( x ) , 由 方 程 y = − y e x + 2 e y s i n x − 7 x 所 确 定 , 求 y ′ ′ ( 0 ) 5. 设 函 数 y = y ( x ) 由 参 数 方 程 { x = 1 + t 2 y = c o s t 所 确 定 , 求 d y d x 和 d 2 y d x 2 6. 设 y = x 3 + 3 x + 1 , 则 d x d y ∣ y = 1 = ‾ 7. x = f ( y ) 是 函 数 y = x + ln x 的 反 函 数 , 求 d 2 f d y 2 8. 设 f ( x ) = ( 1 + x ) x e x − 1 + a r c s i n 1 − x 1 + x 2 , 求 f ′ ( 1 ) \begin{aligned} &1.设y=e^{x^2},求\frac{dy}{dx},\frac{dy}{d(x^2)},\frac{d^2y}{dx^2}\\ &2.设f(x)=(cosx-4)sinx+3x,求\frac{df(x)}{d(x^2)}\\ &3.设f'(0)=1,f''(0)=0,求证:在x=0处,有\frac{d^2}{dx^2}f(x^2)=\frac{d^2}{dx^2}f^2(x)\\ &4.已知可微函数y=y(x),由方程y=-ye^x+2e^ysinx-7x所确定,求y''(0)\\ &5.设函数y=y(x)由参数方程\begin{cases}x=1+t^2\\y=cost\end{cases}所确定,求\frac{dy}{dx}和\frac{d^2y}{dx^2}\\ &6.设y=x^3+3x+1,则\frac{dx}{dy}|_{y=1}=\underline{\qquad}\\ &7.x=f(y)是函数y=x+\ln x的反函数,求\frac{d^2f}{dy^2}\\ &8.设f(x)=\sqrt{\frac{(1+x)\sqrt x}{e^{x-1}}}+arcsin\frac{1-x}{\sqrt{1+x^2}},求f'(1) \end{aligned} 1.设y=ex2,求dxdy,d(x2)dy,dx2d2y2.设f(x)=(cosx−4)sinx+3x,求d(x2)df(x)3.设f′(0)=1,f′′(0)=0,求证:在x=0处,有dx2d2f(x2)=dx2d2f2(x)4.已知可微函数y=y(x),由方程y=−yex+2eysinx−7x所确定,求y′′(0)5.设函数y=y(x)由参数方程{x=1+t2y=cost所确定,求dxdy和dx2d2y6.设y=x3+3x+1,则dydx∣y=1=7.x=f(y)是函数y=x+lnx的反函数,求dy2d2f8.设f(x)=ex−1(1+x)x+arcsin1+x21−x,求f′(1)
答案
1. d y d x = y ′ = e x 2 ⋅ 2 x d 2 y d x 2 = y ′ ′ = e x 2 ⋅ 4 x 2 + e x 2 ⋅ 2 d y d ( x 2 ) = e x 2 ⋅ 2 x d x 2 x d x = e x 2 d y 2 x d x = 1 2 x ⋅ e x 2 ⋅ 2 x = e x 2 2. d f ( a ) = f ′ ( x ) d x = ( − sin 2 x + ( cos x − 4 ) ⋅ cos x + 3 ) d x d ( x 2 ) = 2 x d x ∴ d f ( x ) d ( x 2 ) = − sin 2 x + ( cos x − 4 ) cos x + 3 2 x = ( cos x − 1 ) 2 x 3. y 1 ′ = f ′ ( x 2 ) ⋅ 2 x , y 1 ′ ′ ∣ 0 = f ′ ′ ( x 2 ) ⋅ 2 x ⋅ 2 x + f ′ ( x 2 ) ⋅ 2 ∣ x = 0 = 2 y 2 ′ = 2 f ( x ) ⋅ f ′ ( x ) , y 2 ′ ′ ∣ 0 = 2 f ′ ( x ) f ′ ( x ) + 2 f ( x ) f ′ ′ ( x ) ∣ x = 0 = 2 4. y = − y e x + 2 e y sin x − 7 x    ⟹    y ′ = − y ′ e x − y e x + 2 e y sin x ⋅ y ′ + 2 e y ⋅ cos x − 7    ⟹    y ′ ′ = − y ′ ′ e x − y ′ e x − y ′ e x − y e x + 2 e y ⋅ ( y ′ ) 2 sin x + 2 e y cos x ⋅ y ′ + 2 e y sin x ⋅ y ′ ′ + 2 e y ⋅ y ′ cos x − 2 e y sin x 由 x = 0 代 入 , 分 别 得 : { y = 0 y ′ = − 5 2 y ′ ′ = − 5 2 5. d y d x = y t ′ x t ′ = − sin t 2 t d 2 y d x 2 = d d t ( − sin t 2 t ) d t d x = − cos t ⋅ 2 t + sin t ⋅ 2 4 t 2 ⋅ 1 2 t 6. d x d y ∣ y = 1 = 1 y x ′ ∣ x = 0 = 1 3 x 2 + 3 ∣ x = 0 = 1 3 7. x y ′ = 1 y x ′ , x y ′ ′ = − y x ′ ′ ( y x ′ ) 3 有 y x ′ = 1 + 1 x , y x ′ ′ = − 1 x 2 , x y ′ ′ = − y x ′ ′ ( y x ′ ) 3 = − − 1 / x 2 ( 1 + 1 x ) 3 = x ( 1 + x ) 3 8. 令 y 1 = ( 1 + x ) x e x − 1    ⟹    ln y 1 = 1 2 ( ln ( 1 + x ) + 1 2 ln x − ( x − 1 ) )    ⟹    1 y 1 ⋅ y 1 ′ ′ = 1 2 ( 1 1 + x + 1 2 x − 1 )    ⟹    y 1 ′ ( 1 ) 代 入 → 0 令 y 2 = arcsin 1 − x 1 + x 2    ⟹    y 2 ′ ( 1 ) = lim x → 1 y 2 ( x ) − y 2 ( 1 ) x − 1 = lim x → 1 arcsin 1 − x 1 + x 2 − 0 x − 1 = lim x → 1 1 − x 1 + x 2 x − 1 = − 2 2 故 f ′ ( 1 ) = − 2 2 \begin{aligned} 1.&\frac{dy}{dx}=y'=e^{x^2}\cdot2x\\ &\frac{d^2y}{dx^2}=y^{''}=e^{x^2}\cdot4x^2+e^{x^2}\cdot2\\ &\frac{dy}{d(x^2)}=\frac{e^{x^2}\cdot2xdx}{2xdx}=e^{x^2}\qquad\frac{dy}{2xdx}=\frac1{2x}\cdot e^{x^2}\cdot2x=e{x^2}\\ 2.&df(a)=f'(x)dx=(-\sin^2x+(\cos x-4)\cdot\cos x+3)dx\\ &d(x^2)=2xdx\\ \therefore & \frac{df(x)}{d(x^2)}=\frac{-\sin^2x+(\cos x-4)\cos x+3}{2x}=\frac{(\cos x-1)^2}{x}\\ 3.&y_1'=f'(x^2)\cdot2x,y_1^{''}|_0=f''(x^2)\cdot2x\cdot2x+f'(x^2)\cdot2|_{x=0}=2\\ &y_2'=2f(x)\cdot f'(x),y_2^{''}|_0=2f'(x)f'(x)+2f(x)f''(x)|_{x=0}=2\\ 4.&y=-ye^x+2e^y\sin x-7x\\ &\implies y'=-y'e^x-ye^x+2e^y\sin x\cdot y'+2e^y\cdot \cos x-7\\ &\implies y''=-y''e^x-y'e^x-y'e^x-ye^x+2e^y\cdot(y')^2\sin x+\\ &2e^y\cos x\cdot y'+2e^y\sin x\cdot y''+2e^y\cdot y'\cos x-2e^y\sin x\\ &由x=0代入,分别得:\begin{cases}y=0\\y'=-\frac52\\y''=-\frac52\end{cases}\\ 5.&\frac{dy}{dx}=\frac{y'_t}{x'_t}=\frac{-\sin t}{2t}\\ &\frac{d^2y}{dx^2}=\frac{d}{dt}(\frac{-\sin t}{2t})\frac{dt}{dx}=\frac{-\cos t\cdot2t+\sin t\cdot2}{4t^2}\cdot\frac{1}{2t}\\ 6.&\frac{dx}{dy}|_{y=1}=\frac1{y'_x}|_{x=0}=\frac1{3x^2+3}|_{x=0}=\frac13\\ 7.&x'_y=\frac1y'_x,x''_y=-\frac{y''_x}{(y'_x)^3}\\ &有y'_x=1+\frac1x,y''_x=-\frac1{x^2},x''_y=-\frac{y''_x}{(y'_x)^3}=-\frac{-1/x^2}{(1+\frac1x)^3}=\frac{x}{(1+x)^3}\\ 8.&令y_1=\sqrt{\frac{(1+x)\sqrt x}{e^{x-1}}}\implies\ln{y_1}=\frac12(\ln(1+x)+\frac12\ln x-(x-1))\\ &\implies\frac1{y_1}\cdot y_1''=\frac12(\frac1{1+x}+\frac1{2x}-1)\\ &\implies y'_1(1)\underrightarrow{代入}0\\ &令y_2=\arcsin\frac{1-x}{\sqrt{1+x^2}}\implies y_2'(1)=\lim_{x\to1}\frac{y_2(x)-y_2(1)}{x-1}\\ &=\lim_{x\to1}\frac{\arcsin\frac{1-x}{\sqrt{1+x^2}}-0}{x-1}=\lim_{x\to1}\frac{\frac{1-x}{\sqrt{1+x^2}}}{x-1}=-\frac{\sqrt2}{2}\\ &故f'(1)=-\frac{\sqrt2}2 \end{aligned} 1.2.∴3.4.5.6.7.8.dxdy=y′=ex2⋅2xdx2d2y=y′′=ex2⋅4x2+ex2⋅2d(x2)dy=2xdxex2⋅2xdx=ex22xdxdy=2x1⋅ex2⋅2x=ex2df(a)=f′(x)dx=(−sin2x+(cosx−4)⋅cosx+3)dxd(x2)=2xdxd(x2)df(x)=2x−sin2x+(cosx−4)cosx+3=x(cosx−1)2y1′=f′(x2)⋅2x,y1′′∣0=f′′(x2)⋅2x⋅2x+f′(x2)⋅2∣x=0=2y2′=2f(x)⋅f′(x),y2′′∣0=2f′(x)f′(x)+2f(x)f′′(x)∣x=0=2y=−yex+2eysinx−7x⟹y′=−y′ex−yex+2eysinx⋅y′+2ey⋅cosx−7⟹y′′=−y′′ex−y′ex−y′ex−yex+2ey⋅(y′)2sinx+2eycosx⋅y′+2eysinx⋅y′′+2ey⋅y′cosx−2eysinx由x=0代入,分别得:⎩⎪⎨⎪⎧y=0y′=−25y′′=−25dxdy=xt′yt′=2t−sintdx2d2y=dtd(2t−sint)dxdt=4t2−cost⋅2t+sint⋅2⋅2t1dydx∣y=1=yx′1∣x=0=3x2+31∣x=0=31xy′=y1x′,xy′′=−(yx′)3yx′′有yx′=1+x1,yx′′=−x21,xy′′=−(yx′)3yx′′=−(1+x1)3−1/x2=(1+x)3x令y1=ex−1(1+x)x⟹lny1=21(ln(1+x)+21lnx−(x−1))⟹y11⋅y1′′=21(1+x1+2x1−1)⟹y1′(1)代入0令y2=arcsin1+x21−x⟹y2′(1)=x→1limx−1y2(x)−y2(1)=x→1limx−1arcsin1+x21−x−0=x→1limx−11+x21−x=−22故f′(1)=−22
导数应用
1.切线问题——曲线的构造(显式、隐式、参数方程、极坐标)
2.性态问题——函数的构造(常规函数如显隐参极分变限),用极限 lim n → ∞ \lim_{n\to\infty} limn→∞,用定积分定义,用微分方程的解,用行列式
3.渐近线、曲率、变化率问题——记好公式
题目
1. 若 曲 线 C : f ( x ) 由 方 程 2 x − y = 2 a r c t a n ( y − x ) 确 定 , 则 曲 线 在 点 ( 1 + 2 π , 2 + π 2 ) 的 切 线 方 程 是 ‾ 2. 已 知 两 条 曲 线 由 y = f ( x ) 与 x y + e x + y = 1 所 确 定 , 且 在 点 ( 0 , 0 ) 处 的 切 线 相 同 , 写 出 此 切 线 方 程 , 求 极 限 lim n → 0 n f ( 2 n ) 3. 使 曲 线 f ( x ) = x n 在 点 ( 1 , 1 ) 处 的 切 线 与 x 轴 的 交 点 为 ( x n , 0 ) , n = 1 , 2 , ⋯   , 求 lim n → ∞ f ( x n ) 4. 求 双 曲 线 y 1 = 1 x 与 抛 物 线 y 2 = x 的 交 角 5. 求 函 数 f ( x ) = ∣ x ∣ e − ∣ x − 1 ∣ 的 极 值 6. 设 正 值 函 数 f ( x ) 在 ( 1 , + ∞ ) 内 连 续 , 求 函 数 F ( x ) = ∫ 1 x [ ( 2 x + ln x ) − ( 2 t + ln t ) ] f ( t ) d t 的 最 小 值 点 7. 设 f ( x ) = { lim n → ∞ 1 n ( 1 + c o s x n + c o s 2 x n + ⋯ + c o s n − 1 n x ) , x > 0 1 , x = 0 f ( − x ) , x < 0 ( 1 ) 求 f ′ ( 0 ) ( 2 ) 求 f ( x ) 在 [ − π , π ] 上 的 最 大 值 8. 已 知 f ′ ( − x ) = x [ f ′ ( x ) + 1 ] , 求 f ( x ) 的 极 值 点 , 并 说 明 是 极 大 值 点 还 是 极 小 值 点 9. 讨 论 常 数 a 的 值 , 确 定 曲 线 y = a e x 与 y = 1 + x 的 公 共 点 的 个 数 10. 设 f ( x ) 可 导 , 证 明 : f ( x ) 的 两 个 零 点 之 间 一 定 有 f ( x ) + f ′ ( x ) 的 零 点 11. 设 x ∈ ( 0 , 1 ) , 证 明 下 面 不 等 式 : ( 1 ) ( 1 + x ) ln 2 ( 1 + x ) < x 2 ( 2 ) 1 ln 2 − 1 < 1 ln ( 1 + x ) − 1 x < 1 2 12. 已 知 f ( x ) 二 阶 可 导 , 且 f ( x ) > 0 , f ( x ) ⋅ f ′ ′ ( x ) − [ f ′ ( x ) ] 2 ≥ 0 ( x ∈ R ) ( 1 ) 证 明 f ( x 1 ) ⋅ f ( x 2 ) ≥ f 2 ( x 1 + x 2 2 ) ( x 1 , x 2 ∈ R ) ( 2 ) 若 f ( 0 ) = 1 , 证 明 f ( x ) ≥ e f ′ ( 0 ) x ( x ∈ R ) \begin{aligned} &1.若曲线C:f(x)由方程2x-y=2arctan(y-x)确定,则曲线在点(1+\frac2\pi,2+\frac\pi2)的切线方程是\underline{\qquad}\\ &2.已知两条曲线由y=f(x)与xy+e^{x+y}=1所确定,且在点(0,0)处的切线相同,写出此切线方程,求极限\lim_{n\to0}nf(\frac2n)\\ &3.使曲线f(x)=x^n在点(1,1)处的切线与x轴的交点为(x_n,0),n=1,2,\cdots,求\lim_{n\to\infty}f(x_n)\\ &4.求双曲线y_1=\frac1x与抛物线y_2=\sqrt x的交角\\ &5.求函数f(x)=|x|e^{-|x-1|}的极值\\ &6.设正值函数f(x)在(1,+\infty)内连续,求函数F(x)=\int_1^x[(\frac2x+\ln x)-(\frac2t+\ln t)]f(t)dt的最小值点\\ &7.设f(x)=\begin{cases}\lim_{n\to\infty}\frac1n(1+cos\frac xn+cos\frac{2x}n+\cdots+cos\frac{n-1}nx),x>0\\1,x=0\\f(-x),x<0\end{cases}\\ &(1)求f'(0)\qquad(2)求f(x)在[-\pi,\pi]上的最大值\\ &8.已知f'(-x)=x[f'(x)+1],求f(x)的极值点,并说明是极大值点还是极小值点\\ &9.讨论常数a的值,确定曲线y=ae^x与y=1+x的公共点的个数\\ &10.设f(x)可导,证明:f(x)的两个零点之间一定有f(x)+f'(x)的零点\\ &11.设x\in(0,1),证明下面不等式:(1)(1+x)\ln^2(1+x)<x^2\quad (2)\frac1{\ln2}-1<\frac1{\ln(1+x)}-\frac1x<\frac12\\ &12.已知f(x)二阶可导,且f(x)>0,f(x)\cdot f''(x)-[f'(x)]^2\geq0(x\in R)\\ &(1)证明f(x_1)\cdot f(x_2)\geq f^2(\frac{x_1+x_2}{2})(x_1,x_2\in R)\\ &(2)若f(0)=1,证明f(x)\geq e^{f'(0)x}(x\in R) \end{aligned} 1.若曲线C:f(x)由方程2x−y=2arctan(y−x)确定,则曲线在点(1+π2,2+2π)的切线方程是2.已知两条曲线由y=f(x)与xy+ex+y=1所确定,且在点(0,0)处的切线相同,写出此切线方程,求极限n→0limnf(n2)3.使曲线f(x)=xn在点(1,1)处的切线与x轴的交点为(xn,0),n=1,2,⋯,求n→∞limf(xn)4.求双曲线y1=x1与抛物线y2=x的交角5.求函数f(x)=∣x∣e−∣x−1∣的极值6.设正值函数f(x)在(1,+∞)内连续,求函数F(x)=∫1x[(x2+lnx)−(t2+lnt)]f(t)dt的最小值点7.设f(x)=⎩⎪⎨⎪⎧limn→∞n1(1+cosnx+cosn2x+⋯+cosnn−1x),x>01,x=0f(−x),x<0(1)求f′(0)(2)求f(x)在[−π,π]上的最大值8.已知f′(−x)=x[f′(x)+1],求f(x)的极值点,并说明是极大值点还是极小值点9.讨论常数a的值,确定曲线y=aex与y=1+x的公共点的个数10.设f(x)可导,证明:f(x)的两个零点之间一定有f(x)+f′(x)的零点11.设x∈(0,1),证明下面不等式:(1)(1+x)ln2(1+x)<x2(2)ln21−1<ln(1+x)1−x1<2112.已知f(x)二阶可导,且f(x)>0,f(x)⋅f′′(x)−[f′(x)]2≥0(x∈R)(1)证明f(x1)⋅f(x2)≥f2(2x1+x2)(x1,x2∈R)(2)若f(0)=1,证明f(x)≥ef′(0)x(x∈R)
答案
1. 2 − y ′ = 2 1 + ( y − x ) 2 ( y ′ − 1 )    ⟹    k = y ′ ∣ p = 3 2    ⟹    y − ( 2 + π 2 ) = 3 2 ( x − ( 1 + π 2 ) ) 2. 由 x y + e x + y = 1 , 知 y + x y ′ + e x + y ( 1 + y ′ ) = 0    ⟹    y ′ ( 0 ) = − 1 = k , ∴ y − 0 = − x    ⟹    I = lim n → ∞ f ( 2 n ) 1 n = lim n → ∞ f ( 0 + 2 n ) − f ( 0 ) 2 n ⋅ 2 = 2 f ′ ( 0 ) = − 2 3. f ′ ( x ) = n x n − 1    ⟹    k = n , 故 y − 1 = n ( x − 1 )    ⟹    x n = 1 − 1 n 故 I = lim n → ∞ f ( x n ) = lim n → ∞ ( 1 − 1 n ) n = e A = e − 1 其 中 A = lim n → ∞ n ( 1 − 1 n − 1 ) = − 1 4. 交 点 ( 1 , 1 ) , y 1 ′ ( 1 ) = ( − 1 x 2 ) ∣ x = 1 = − 1 = tan α y 2 ′ ( 1 ) = ( 1 2 x ) ∣ x = 1 = 1 2 = tan β    ⟹    r = α − β = 3 4 π − arctan 1 2 5. f ( x ) = { − x e x − 1 , x < 0 0 , x = 0 x e x − 1 , 0 < x < 1 1 , x = 1 x e 1 − x , x > 1 f ′ ( x ) = { − e x − 1 − x e x − 1 , x < 0 e x − 1 + x e x − 1 , 0 < x < 1 e 1 − x − x e 1 x , x > 1 f ( ′ 0 ) = − e − 1 , f + ′ ( 0 ) = e − 1 , ∴ f ′ ( 0 ) 不 存 在 f ( ′ 1 ) = 2 , f + ′ ( 1 ) = 0 , ∴ f ′ ( 1 ) 不 存 在 知 x 1 = − 1 , x 2 = 0 , x 3 = 1 , 则 x 1 = − 1 为 极 大 点 , x 2 = 0 为 极 小 点 , x 3 = 1 为 极 大 点 6. F ( x ) = ∫ 1 x ( 2 x + ln x ) f ( t ) d t − ∫ 1 x ( 2 t + ln t ) f ( t ) d t = ( 2 x + ln x ) ∫ 1 x f ( t ) d t − ∫ 1 x ( 2 t + ln t ) f ( t ) d t    ⟹    F ′ ( x ) = ( − 2 x 2 + 1 x ) ∫ 1 x f ( t ) d t + ( 2 x + ln x ) F ( x ) − ( 2 x + ln x ) f ( x ) 由 F ′ ( x ) = 0 知 x = 2 是 唯 一 极 小 值 点 , ∴ x = 2 是 最 小 值 点 7. ( 1 ) x > 0 时 , f ( x ) = lim n → ∞ ∑ i = 0 n − 1 cos i n x ⋅ 1 n = lim n → ∞ ∑ i = 0 n − 1 cos x n i ⋅ x n ⋅ 1 x = 1 x ∫ 0 x cos t d t = sin x x    ⟹    f ( x ) = { sin x x , x > 0 1 , x = 0 sin x , x < 0 8. f ′ ( − 1 x ) = x [ f ′ ( x ) + 1 ]    ⟹    f ′ ( x ) = − x [ f ′ ( x ) + 1 ] 代 入 , 得 f ′ ( x ) = − x [ x [ f ′ ( x ) + 1 ] + 1 ]    ⟹    f ′ ( x ) = − x 2 − x 1 + x 2 由 f ′ ( x ) = 0 , 知 x 1 = 0 , x 2 = − 1 ∴ x 1 = 0 是 极 大 值 点 , x 2 = − 1 是 极 小 值 点 9. a e x = 1 + x , 令 f ( x ) = a e x − 1 − x    ⟹    a = 1 + x e x , 令 f ( x ) = 1 + x e x , f ′ ( x ) = e x − ( 1 + x ) e x ( e x ) 2 = − x e x    ⟹    x < 0 时 , f ( x ) 单 调 递 增 , x > 0 时 , f ( x ) 单 调 递 减 , 由 f ( − ∞ ) = lim n → ∞ 1 + x e x = − ∞ f ( 0 ) = 1 , 且 f ( + ∞ ) = lim x → + ∞ 1 + x e x = 0 { a ≥ 0 , 1 0 < a < 1 , 2 a = 1 , 1 a > 1 , n a n 10. f ( x 1 ) = f ( x 2 ) = 0 ( x 1 < x 2 )    ⟹    f ( ξ ) + f ′ ( ξ ) = 0 ( x 1 < ξ < x 2 ) F ( x ) = e x f ( x ) , 则 F ( x 1 ) = 0 = F ( x 2 )    ⟹    ∃ ξ ∈ ( x 1 , x 2 ) , 使 F ′ ( ξ ) = e x f ( x ) + e x f ′ ( x ) ∣ ξ = 0 即 f ( ξ ) + f ′ ( ξ ) = 0 11. ( 1 ) 令 f ( x ) = ( 1 + x ) ln 2 ( 1 + x ) − x 2 , 0 < x < 1 , ∴ f ′ ( x ) = ln ( 1 + x ) + 2 ln ( 1 + x ) − 2 x , 0 < x < 1 且 f ′ ′ ( x ) = 2 ln ( 1 + x ) 1 + x + 2 1 + x − 2 = 2 [ ln ( 1 + x ) − x ] 1 + x < 0    ⟹    f ′ ( x ) 单 调 递 减 且 f ′ ( 0 ) = 0 , 故 f ′ ( x ) < 0 , 0 < x < 1    ⟹    f ( x ) 单 调 递 减 且 f ( 0 ) = 0 , 故 f ( x ) < 0 , 0 < x < 1 ( 2 ) 令 g ( x ) = 1 ln ( 1 + x ) − 1 x , 0 < x < 1    ⟹    g ′ ( x ) = − 1 1 + x ln 2 ( 1 + x ) + 1 x 2 = ( 1 + x ) ln 2 ( 1 + x ) − x 2 x 2 ( 1 + x ) ln 2 ( 1 + x ) 由 ( 1 ) 可 知 , g ′ ( x ) < 0 , 故 g ( x ) 单 调 递 减 , g ( 1 ) = 1 ln 2 − 1 最 小 g ( 0 ) = lim x → 0 ( 1 ln ( 1 + x ) − 1 x ) = lim x → 0 x − ln ( 1 + x ) x ln ( 1 + x ) = 1 2 最 大 即 1 ln 2 − 1 < 1 ln ( 1 + X ) − 1 x < 1 2 12. ( 1 ) ln f ( x 1 ) + ln f ( x 2 ) ≥ 2 ln f ( x 1 + x 2 2 )    ⟹    ln f ( x 1 ) + ln f ( x 2 ) 2 ≥ ln f ( x 1 + x 2 2 ) 令 g ( x ) = ln f ( x ) , g ′ ( x ) = f ′ ( x ) f ( x )    ⟹    g ′ ′ ( x ) = f ′ ′ ( x ) f ( x ) − f ′ ( x ) f ′ ( x ) f 2 ( x ) ≥ 0 故 g ( x ) 是 凹 曲 线 , 于 是 g ( x 1 ) + g ( x 2 ) 2 ≥ g ( x 1 + x 2 2 ) 即 ln f ( x ) + ln f ( x 2 ) 2 ≥ ln f ( x 1 + x 2 2 ) ( 2 ) 由 ( 1 ) 得 g ( x ) = ln f ( x ) 是 凹 曲 线 y − g ( 0 ) = g ′ ( 0 ) ( x − 0 ) 即 y = f ′ ( 0 ) x    ⟹    g ( x ) ≥ y 即 ln f ( x ) ≥ f ′ ( 0 ) x    ⟹    f ( x ) ≥ e f ′ ( 0 ) x \begin{aligned} 1.&2-y'=\frac2{1+(y-x)^2}(y'-1)\implies k=y'|_p=\frac32\\ &\implies y-(2+\frac{\pi}2)=\frac32(x-(1+\frac\pi2))\\ 2.&由xy+e^{x+y}=1,知y+xy'+e^{x+y}(1+y')=0\\ &\implies y'(0)=-1=k,\therefore y-0=-x\\ &\implies I=\lim_{n\to\infty}\frac{f(\frac2n)}{\frac1n}=\lim_{n\to\infty}\frac{f(0+\frac2n)-f(0)}{\frac2n}\cdot2=2f'(0)=-2\\ 3.&f'(x)=nx^{n-1}\implies k=n,故y-1=n(x-1)\implies x_n=1-\frac1n\\ &故I=\lim_{n\to\infty}f(x_n)=\lim_{n\to\infty}(1-\frac1n)^n=e^A=e^{-1}\\ &其中A=\lim_{n\to\infty}n(1-\frac1n-1)=-1\\ 4.&交点(1,1),y_1'(1)=(-\frac1{x^2})|_{x=1}=-1=\tan\alpha\\ &y_2'(1)=(\frac1{2\sqrt x})|_{x=1}=\frac12=\tan\beta\\ &\implies r=\alpha-\beta=\frac34\pi-\arctan\frac12\\ 5.&f(x)=\begin{cases}-xe^{x-1},x<0\\0,x=0\\xe^{x-1},0<x<1\\ 1,x=1\\xe^{1-x},x>1\end{cases}\qquad f'(x)=\begin{cases}-e^{x-1}-xe^{x-1},x<0\\e^{x-1}+xe^{x-1},0<x<1\\ e^{1-x}-xe^{1_x},x>1\end{cases}\\ &f'_(0)=-e^{-1},f'_+(0)=e^{-1},\therefore f'(0)不存在\\ &f'_(1)=2,f'_+(1)=0,\therefore f'(1)不存在\\ &知x_1=-1,x_2=0,x_3=1,则x_1=-1为极大点,x_2=0为极小点,x_3=1为极大点\\ 6.&F(x)=\int_1^x(\frac2x+\ln x)f(t)dt-\int_1^x(\frac2t+\ln t)f(t)dt\\ &=(\frac2x+\ln x)\int_1^xf(t)dt-\int_1^x(\frac2t+\ln t)f(t)dt\\ & \implies F'(x)=(-\frac2{x^2}+\frac1x)\int_1^xf(t)dt+(\frac2x+\ln x)F(x)-(\frac2x+\ln x)f(x)\\ &由F'(x)=0知x=2是唯一极小值点,\therefore x=2是最小值点\\ 7.(1)&x>0时,f(x)=\lim_{n\to\infty}\sum_{i=0}^{n-1}\cos\frac inx\cdot\frac1n=\lim_{n\to\infty}\sum_{i=0}^{n-1}\cos\frac xni\cdot\frac xn\cdot\frac1x\\ &=\frac1x\int_0^x\cos tdt=\frac{\sin x}{x}\implies f(x)=\begin{cases}\frac{\sin x}{x},x>0\\1,x=0\\ \frac{\sin x},x<0\end{cases}\\ 8.&f'(-1x)=x[f'(x)+1]\implies f'(x)=-x[f'(x)+1]\\ &代入,得f'(x)=-x[x[f'(x)+1]+1]\implies f'(x)=\frac{-x^2-x}{1+x^2}\\ &由f'(x)=0,知x_1=0,x_2=-1\\ &\therefore x_1=0是极大值点,x_2=-1是极小值点\\ 9.&ae^x=1+x,令f(x)=ae^x-1-x\\ &\implies a=\frac{1+x}{e^x},令f(x)=\frac{1+x}{e^x},f'(x)=\frac{e^x-(1+x)e^x}{(e^x)^2}=\frac{-x}{e^x}\\ &\implies x<0时,f(x)单调递增,x>0时,f(x)单调递减,由f(-\infty)=\lim_{n\to\infty}\frac{1+x}{e^x}=-\infty\\ &f(0)=1,且f(+\infty)=\lim_{x\to+\infty}\frac{1+x}{e^x}=0\\ &\begin{cases}a\geq0,1\\0<a<1,2 \\a=1,1\\a>1,nan\end{cases}\\ 10.&f(x_1)=f(x_2)=0(x_1<x_2)\\ &\implies f(\xi)+f'(\xi)=0(x_1<\xi<x_2)\\ &F(x)=e^xf(x),则F(x_1)=0=F(x_2)\implies\exists\xi\in(x_1,x_2),使F'(\xi)=e^xf(x)+e^xf'(x)|_{\xi}=0\\ &即f(\xi)+f'(\xi)=0\\ 11.(1)&令f(x)=(1+x)\ln^2(1+x)-x^2,0<x<1,\therefore f'(x)=\ln^(1+x)+2\ln(1+x)-2x,0<x<1\\ &且f''(x)=\frac{2\ln(1+x)}{1+x}+\frac2{1+x}-2=\frac{2[\ln(1+x)-x]}{1+x}<0\\ &\implies f'(x)单调递减且f'(0)=0,故f'(x)<0,0<x<1\\ &\implies f(x)单调递减且f(0)=0,故f(x)<0,0<x<1\\ (2)&令g(x)=\frac1{\ln(1+x)}-\frac1x,0<x<1 \implies g'(x)=\frac{-\frac1{1+x}}{\ln^2(1+x)}+\frac1{x^2}=\frac{(1+x)\ln^2(1+x)-x^2}{x^2(1+x)\ln^2(1+x)}\\ &由(1)可知,g'(x)<0,故g(x)单调递减,g(1)=\frac1{\ln2}-1最小\\ &g(0)=\lim_{x\to0}(\frac1{\ln(1+x)}-\frac1x)=\lim_{x\to0}\frac{x-\ln(1+x)}{x\ln(1+x)}=\frac12最大\\ &即\frac1{\ln2}-1<\frac1{\ln(1+X)}-\frac1x<\frac12\\ 12.(1)&\ln f(x_1)+\ln f(x_2)\geq2\ln f(\frac{x_1+x_2}2)\implies\frac{\ln f(x_1)+\ln f(x_2)}{2}\geq\ln f(\frac{x_1+x_2}2)\\ &令g(x)=\ln f(x),g'(x)=\frac{f'(x)}{f(x)}\implies g''(x)=\frac{f''(x)f(x)-f'(x)f'(x)}{f^2(x)}\geq0\\ &故g(x)是凹曲线,于是\frac{g(x_1)+g(x_2)}2\geq g(\frac{x_1+x_2}2)\\ &即\frac{\ln f(x)+\ln f(x_2)}{2}\geq\ln f(\frac{x_1+x_2}2)\\ (2)&由(1)得g(x)=\ln f(x)是凹曲线\\ &y-g(0)=g'(0)(x-0)即y=f'(0)x\\ &\implies g(x)\geq y 即\ln f(x)\geq f'(0)x\implies f(x)\geq e^{f'(0)x}\\ \end{aligned} 1.2.3.4.5.6.7.(1)8.9.10.11.(1)(2)12.(1)(2)2−y′=1+(y−x)22(y′−1)⟹k=y′∣p=23⟹y−(2+2π)=23(x−(1+2π))由xy+ex+y=1,知y+xy′+ex+y(1+y′)=0⟹y′(0)=−1=k,∴y−0=−x⟹I=n→∞limn1f(n2)=n→∞limn2f(0+n2)−f(0)⋅2=2f′(0)=−2f′(x)=nxn−1⟹k=n,故y−1=n(x−1)⟹xn=1−n1故I=n→∞limf(xn)=n→∞lim(1−n1)n=eA=e−1其中A=n→∞limn(1−n1−1)=−1交点(1,1),y1′(1)=(−x21)∣x=1=−1=tanαy2′(1)=(2x1)∣x=1=21=tanβ⟹r=α−β=43π−arctan21f(x)=⎩⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧−xex−1,x<00,x=0xex−1,0<x<11,x=1xe1−x,x>1f′(x)=⎩⎪⎨⎪⎧−ex−1−xex−1,x<0ex−1+xex−1,0<x<1e1−x−xe1x,x>1f(′0)=−e−1,f+′(0)=e−1,∴f′(0)不存在f(′1)=2,f+′(1)=0,∴f′(1)不存在知x1=−1,x2=0,x3=1,则x1=−1为极大点,x2=0为极小点,x3=1为极大点F(x)=∫1x(x2+lnx)f(t)dt−∫1x(t2+lnt)f(t)dt=(x2+lnx)∫1xf(t)dt−∫1x(t2+lnt)f(t)dt⟹F′(x)=(−x22+x1)∫1xf(t)dt+(x2+lnx)F(x)−(x2+lnx)f(x)由F′(x)=0知x=2是唯一极小值点,∴x=2是最小值点x>0时,f(x)=n→∞limi=0∑n−1cosnix⋅n1=n→∞limi=0∑n−1cosnxi⋅nx⋅x1=x1∫0xcostdt=xsinx⟹f(x)=⎩⎪⎨⎪⎧xsinx,x>01,x=0,sinxx<0f′(−1x)=x[f′(x)+1]⟹f′(x)=−x[f′(x)+1]代入,得f′(x)=−x[x[f′(x)+1]+1]⟹f′(x)=1+x2−x2−x由f′(x)=0,知x1=0,x2=−1∴x1=0是极大值点,x2=−1是极小值点aex=1+x,令f(x)=aex−1−x⟹a=ex1+x,令f(x)=ex1+x,f′(x)=(ex)2ex−(1+x)ex=ex−x⟹x<0时,f(x)单调递增,x>0时,f(x)单调递减,由f(−∞)=n→∞limex1+x=−∞f(0)=1,且f(+∞)=x→+∞limex1+x=0⎩⎪⎪⎪⎨⎪⎪⎪⎧a≥0,10<a<1,2a=1,1a>1,nanf(x1)=f(x2)=0(x1<x2)⟹f(ξ)+f′(ξ)=0(x1<ξ<x2)F(x)=exf(x),则F(x1)=0=F(x2)⟹∃ξ∈(x1,x2),使F′(ξ)=exf(x)+exf′(x)∣ξ=0即f(ξ)+f′(ξ)=0令f(x)=(1+x)ln2(1+x)−x2,0<x<1,∴f′(x)=ln(1+x)+2ln(1+x)−2x,0<x<1且f′′(x)=1+x2ln(1+x)+1+x2−2=1+x2[ln(1+x)−x]<0⟹f′(x)单调递减且f′(0)=0,故f′(x)<0,0<x<1⟹f(x)单调递减且f(0)=0,故f(x)<0,0<x<1令g(x)=ln(1+x)1−x1,0<x<1⟹g′(x)=ln2(1+x)−1+x1+x21=x2(1+x)ln2(1+x)(1+x)ln2(1+x)−x2由(1)可知,g′(x)<0,故g(x)单调递减,g(1)=ln21−1最小g(0)=x→0lim(ln(1+x)1−x1)=x→0limxln(1+x)x−ln(1+x)=21最大即ln21−1<ln(1+X)1−x1<21lnf(x1)+lnf(x2)≥2lnf(2x1+x2)⟹2lnf(x1)+lnf(x2)≥lnf(2x1+x2)令g(x)=lnf(x),g′(x)=f(x)f′(x)⟹g′′(x)=f2(x)f′′(x)f(x)−f′(x)f′(x)≥0故g(x)是凹曲线,于是2g(x1)+g(x2)≥g(2x1+x2)即2lnf(x)+lnf(x2)≥lnf(2x1+x2)由(1)得g(x)=lnf(x)是凹曲线y−g(0)=g′(0)(x−0)即y=f′(0)x⟹g(x)≥y即lnf(x)≥f′(0)x⟹f(x)≥ef′(0)x
积分
一元积分比大小
题目
1. 设 F ( x ) = ∫ x x + 2 π e s i n t s i n t d t , 则 F ( x ) = ‾ 2. 设 I k = ∫ 0 k π e x 2 s i n x d x ( k = 1 , 2 , 3 ) , 则 有 : ( ) A . I 1 < I 2 < I 3 B . I 3 < I 2 < I 1 C . I 2 < I 3 < I 1 D . I 2 < I 1 < I 3 3. 设 常 数 a > 0 , 积 分 I 1 = ∫ 0 2 π c o s x 1 + x α d x , I 2 = ∫ 0 π 2 s i n x 1 + x α d x , 则 ( ) A . I 1 > I 2 B . I 1 < I 2 C . I 1 = I 2 D . 大 小 与 α 有 关 4. 证 明 ∫ 0 1 x ⋅ s i n π 2 x 1 + x d x > ∫ 0 1 x ⋅ c o s π 2 x 1 + x d x \begin{aligned} &1.设F(x)=\int_x^{x+2\pi}e^{sint}sintdt,则F(x)=\underline{\qquad}\\ &2.设I_k=\int_0^{k\pi}e^{x^2}sinxdx(k=1,2,3),则有:(\quad)\\ &A.I_1<I_2<I_3\quad B.I_3<I_2<I_1\quad C.I_2<I_3<I_1\quad D.I_2<I_1<I_3\\ &3.设常数a>0,积分I_1=\int_0^{\frac2\pi}\frac{cosx}{1+x^\alpha}dx,I_2=\int_0^{\frac\pi2}\frac{sinx}{1+x^\alpha}dx,则(\quad)\\ &A.I_1>I_2\quad B.I_1<I_2\quad C.I_1=I_2\quad D.大小与\alpha有关\\ &4.证明\int_0^1\frac{x\cdot sin\frac\pi2x}{1+x}dx>\int_0^1\frac{x\cdot cos\frac\pi2x}{1+x}dx \end{aligned} 1.设F(x)=∫xx+2πesintsintdt,则F(x)=2.设Ik=∫0kπex2sinxdx(k=1,2,3),则有:()A.I1<I2<I3B.I3<I2<I1C.I2<I3<I1D.I2<I1<I33.设常数a>0,积分I1=∫0π21+xαcosxdx,I2=∫02π1+xαsinxdx,则()A.I1>I2B.I1<I2C.I1=I2D.大小与α有关4.证明∫011+xx⋅sin2πxdx>∫011+xx⋅cos2πxdx
答案
1. F ′ ( x ) = e sin ( x + 2 π ) sin ( x + 2 π ) − e sin x sin x = 0    ⟹    F ( x ) = c = F ( 0 ) = ∫ 0 2 π e sin t sin t d t > 0 故 F ( x ) 为 正 常 数 2. I 1 = ∫ 0 π e x 2 sin x d x , I 2 = ∫ 0 2 π e x 2 sin x d x , I 3 = ∫ 0 3 π e x 2 sin x d x 画 图 知 该 函 数 随 着 横 坐 标 x 的 增 大 , 其 因 式 e x 2 也 会 增 大 , 故 其 凹 或 凸 的 区 间 会 增 大 I 1 > 0 , I 2 < 0 , I 3 > I 1 > 0 3. I 1 − I 2 = ∫ 0 π 2 1 1 + x α ( cos x − sin x ) d x = ∫ 0 π 4 1 1 + x α ( cos x − sin x ) d x + ∫ π 4 π 2 1 1 + x α ( cos x − sin x ) d x > 0 ( 前 者 大 , 后 者 小 ) 4. I 左 − I 右 = ∫ 0 1 x 1 + x ( sin π 2 x − cos π 2 x ) d x = ∫ 0 1 2 ( sin π 2 x − cos π 2 x ) d x + ∫ 1 2 1 x 1 + x ( sin π 2 x − cos π 2 x ) d x > 0 \begin{aligned} 1.&F'(x)=e^{\sin(x+2\pi)}\sin(x+2\pi)-e^{\sin x}\sin x=0\\ &\implies F(x)=c=F(0)=\int_0^{2\pi}e^{\sin t}\sin tdt>0\\ &故F(x)为正常数\\ 2.&I_1=\int_0^\pi e^{x^2}\sin xdx,I_2=\int_0^{2\pi}e^{x^2}\sin xdx,I_3=\int_0^{3\pi}e^{x^2}\sin xdx\\ &画图知该函数随着横坐标x的增大,其因式e^{x^2}也会增大,故其凹或凸的区间会增大\\ &I_1>0,I_2<0,I_3>I_1>0\\ 3.&I_1-I_2=\int_0^{\frac\pi2}\frac1{1+x^\alpha}(\cos x-\sin x)dx\\ &=\int_0^{\frac\pi4}\frac1{1+x^\alpha}(\cos x-\sin x)dx+\int_\frac\pi4^\frac\pi2\frac1{1+x^\alpha}(\cos x-\sin x)dx>0(前者大,后者小)\\ 4.&I_左-I_右=\int_0^1\frac{x}{1+x}(\sin\frac\pi2x-\cos\frac\pi2x)dx\\ &=\int_0^{\frac12}(\sin\frac\pi2x-\cos\frac\pi2x)dx+\int_\frac12^1\frac x{1+x}(\sin\frac\pi2x-\cos\frac\pi2x)dx>0\\ \end{aligned} 1.2.3.4.F′(x)=esin(x+2π)sin(x+2π)−esinxsinx=0⟹F(x)=c=F(0)=∫02πesintsintdt>0故F(x)为正常数I1=∫0πex2sinxdx,I2=∫02πex2sinxdx,I3=∫03πex2sinxdx画图知该函数随着横坐标x的增大,其因式ex2也会增大,故其凹或凸的区间会增大I1>0,I2<0,I3>I1>0I1−I2=∫02π1+xα1(cosx−sinx)dx=∫04π1+xα1(cosx−sinx)dx+∫4π2π1+xα1(cosx−sinx)dx>0(前者大,后者小)I左−I右=∫011+xx(sin2πx−cos2πx)dx=∫021(sin2πx−cos2πx)dx+∫2111+xx(sin2πx−cos2πx)dx>0
定积分定义
部分题在36讲配套视频中出现过,故请至相关笔记页面查看。
数列极限
题目
1. lim n → ∞ ( n + 1 ) ( n + 2 ) ⋯ ( n + n ) n n = ‾ 2. f ( x ) = { e − x , x ≠ 0 lim n → ∞ 2 [ n ( n + 1 ) 2 + n ( n + 2 ) 2 + ⋯ + n ( n + n ) 2 ] , x = 0 , 求 f ′ ( 0 ) 3. ( 1 ) 证 明 : 当 x → 0 + 时 , 不 等 式 0 < tan x − x x < x 4 成 立 。 ( 2 ) 设 x n = ∑ k = 1 n tan 2 1 n + k , 求 lim n → ∞ x n \begin{aligned} &1.\lim_{n\to\infty}\frac{\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}{n}=\underline{\qquad}\\ &2.f(x)=\begin{cases}e^{-x},x\neq0\\ \lim_{n\to\infty}2[\frac n{(n+1)^2}+\frac n{(n+2)^2}+\cdots+\frac n{(n+n)^2}],x=0\end{cases},求f'(0)\\ &3.(1)证明:当x\to0^+时,不等式0<\tan^x-x^x< x^4成立。(2)设x_n=\sum^n_{k=1}\tan^2\frac1{\sqrt{n+k}},求\lim_{n\to\infty}x_n \end{aligned} 1.n→∞limnn(n+1)(n+2)⋯(n+n)=2.f(x)={e−x,x̸=0limn→∞2[(n+1)2n+(n+2)2n+⋯+(n+n)2n],x=0,求f′(0)3.(1)证明:当x→0+时,不等式0<tanx−xx<x4成立。(2)设xn=k=1∑ntan2n+k1,求n→∞limxn
答案
1. I = lim n → ∞ ( 1 + 1 n ) ( 1 + 2 n ) ⋯ ( 1 + n n ) n = e ln ( 1 + 1 n ) ( 1 + 2 n ) ⋯ ( 1 + n n ) n = e 1 n ∑ i = 1 n ln ( 1 + i n ) = e ∫ 0 1 ln ( 1 + x ) d x = e 2 ln 2 − 1 = 4 e 2. x = 0 时 , f ( x ) = lim n → ∞ 2 ∑ i = 1 n n ( n + i ) 2 = 2 lim n → ∞ ∑ i = 1 n 1 ( 1 + i n ) 2 ⋅ 1 n = 2 ∫ 0 1 1 ( 1 + x ) 2 d x = 2 ( − 1 1 + x ) ∣ 0 ′ = 2 ( − 2 x + 1 ) = 1 f ( x ) = { e − x , x ≠ 0 1 , x = 0 , f ′ ( 0 ) = lim x → 0 f ( x ) − f ( 0 ) x = lim x → 0 e − x − 1 x = − 1 3. ( 1 ) lim x → 0 + tan 2 x − x 2 x 4 = 2 3 < 1    ⟹    x → 0 + 时 , 0 < tan 2 x − x 2 < x 4 ( 2 ) 由 ( 1 ) 知 x 2 < tan 2 x < x 2 + x 4    ⟹    ∑ k = 1 n 1 n + k < ∑ k = 1 n tan 2 1 n + k < ∑ k = 1 n 1 n + k + ∑ k = 1 n 1 ( n + k ) 2 由 lim n → ∞ ∑ k = 1 n 1 n + k = lim n → ∞ 1 n ⋅ 1 1 + k n = ∫ + 0 1 1 1 + x d x 且 lim n → ∞ ∑ k = 1 n 1 ( n + k ) 2 < lim n → ∞ ∑ k = 1 n 1 n 2 = 1 n ∴ lim n → ∞ x n = 0 \begin{aligned} 1.I&=\lim_{n\to\infty}\sqrt[n]{(1+\frac1n)(1+\frac2n)\cdots(1+\frac nn)}\\ &=e^{\ln\sqrt[n]{(1+\frac1n)(1+\frac2n)\cdots(1+\frac nn)}}\\ &=e^{\frac1n\sum_{i=1}^n}\ln(1+\frac in)\\ &=e^{\int_0^1\ln(1+x)dx}=e^{2\ln2-1}=\frac4e\\ 2.&x=0时,f(x)=\lim_{n\to\infty}2\sum_{i=1}^n\frac{n}{(n+i)^2}=2\lim_{n\to\infty}\sum_{i=1}^n\frac1{(1+\frac{i}{n})^2}\cdot\frac1n\\ &=2\int_0^1\frac1{(1+x)^2}dx=2(-\frac1{1+x})|_0'=2(-\frac2x+1)=1\\ &f(x)=\begin{cases}e^{-x},x\neq0\\1,x=0\end{cases},f'(0)=\lim_{x\to0}\frac{f(x)-f(0)}x=\lim_{x\to0}\frac{e^{-x}-1}x=-1\\ 3.(1)&\lim_{x\to0^+}\frac{\tan^2x-x^2}{x^4}=\frac23<1\implies x\to0^+时,0<\tan^2x-x^2<x^4\\ (2)&由(1)知x^2<\tan^2x<x^2+x^4\\ &\implies\sum_{k=1}^n\frac1{n+k}<\sum_{k=1}^n\tan^2\frac1{\sqrt{n+k}}<\sum_{k=1}^n\frac1{n+k}+\sum_{k=1}^n\frac1{(n+k)^2}\\ &由\lim_{n\to\infty}\sum_{k=1}^n\frac1{n+k}=\lim_{n\to\infty}\frac1n\cdot\frac1{1+\frac kn}=\int+0^1\frac1{1+x}dx\\ &且\lim_{n\to\infty}\sum_{k=1}^n\frac1{(n+k)^2}<\lim_{n\to\infty}\sum_{k=1}^n\frac1{n^2}=\frac1n\\ &\therefore \lim_{n\to\infty}x_n=0 \end{aligned} 1.I2.3.(1)(2)=n→∞limn(1+n1)(1+n2)⋯(1+nn)=elnn(1+n1)(1+n2)⋯(1+nn)=en1∑i=1nln(1+ni)=e∫01ln(1+x)dx=e2ln2−1=e4x=0时,f(x)=n→∞lim2i=1∑n(n+i)2n=2n→∞limi=1∑n(1+ni)21⋅n1=2∫01(1+x)21dx=2(−1+x1)∣0′=2(−x2+1)=1f(x)={e−x,x̸=01,x=0,f′(0)=x→0limxf(x)−f(0)=x→0limxe−x−1=−1x→0+limx4tan2x−x2=32<1⟹x→0+时,0<tan2x−x2<x4由(1)知x2<tan2x<x2+x4⟹k=1∑nn+k1<k=1∑ntan2n+k1<k=1∑nn+k1+k=1∑n(n+k)21由n→∞limk=1∑nn+k1=n→∞limn1⋅1+nk1=∫+011+x1dx且n→∞limk=1∑n(n+k)21<n→∞limk=1∑nn21=n1∴n→∞limxn=0
变现积分(导数)
直接求导
题目
1. 设 f ( x ) 为 连 续 函 数 , 且 F ( x ) = ∫ 1 x ln x f ( t ) d t , 则 F ( x ) = 2. lim x → 0 ∫ 0 x s i n 2 t 4 + t 2 ∫ 0 x ( t + 1 − 1 ) d t d t 3. lim x → 0 ∫ 0 x [ ∫ 0 u 2 arctan ( 1 + t ) d t ] d u x ( 1 − cos x ) \begin{aligned} &1.设f(x)为连续函数,且F(x)=\int_{\frac1x}^{\ln x}f(t)dt,则F(x)=\\ &2.\lim_{x\to0}\int_0^x\frac{sin2t}{\sqrt{4+t^2}\int_0^x(\sqrt{t+1}-1)dt}dt\\ &3.\lim_{x\to0}\frac{\int_0^x[\int_0^{{u}^2}\arctan(1+t)dt]du}{x(1-\cos x)} \end{aligned} 1.设f(x)为连续函数,且F(x)=∫x1lnxf(t)dt,则F(x)=2.x→0lim∫0x4+t2∫0x(t+1−1)dtsin2tdt3.x→0limx(1−cosx)∫0x[∫0u2arctan(1+t)dt]du
答案
1. F ′ ( x ) = f ( ln x ) ⋅ 1 x − f ( 1 x ) ( − 1 x 2 ) 2. I = lim x → 0 ∫ 0 x sin 2 t 4 + t 2 d t ∫ 0 x ( t + 1 − 1 ) d t = lim x → 0 sin 2 x 4 + x 2 x + 1 − 1 = 1 2 lim x → 0 sin 2 x 1 + x − 1 = 2 3. 令 φ ( u ) = ∫ 0 u 2 arctan ( 1 + t ) d t 则 I = lim x → 0 ∫ 0 x φ ( u ) d u x ⋅ 1 2 x 2 = lim x → 0 φ ( x ) 3 2 x 2 lim x → 0 ∫ 0 x 2 arctan ( 1 + t ) d t 3 2 x 2 lim x → 0 arctan ( 1 + x 2 ) ⋅ 2 x 3 x = π 6 \begin{aligned} 1.&F'(x)=f(\ln x)\cdot\frac1x-f(\frac1x)(\frac{-1}{x^2})\\ 2.&I=\lim_{x\to0}\frac{\int_0^x\frac{\sin2t}{\sqrt{4+t^2}}dt}{\int_0^x(\sqrt{t+1}-1)dt}=\lim_{x\to0}\frac{\frac{\sin2x}{\sqrt{4+x^2}}}{\sqrt{x+1}-1}\\ &=\frac12\lim_{x\to0}\frac{\sin2x}{\sqrt{1+x}-1}=2\\ 3.&令\varphi(u)=\int_0^{u^2}\arctan(1+t)dt\\ &则I=\lim_{x\to0}\frac{\int_0^x\varphi(u)du}{x\cdot\frac12x^2}=\lim_{x\to0}\frac{\varphi(x)}{\frac32x^2}\\ &\lim_{x\to0}\frac{\int_0^{x^2}\arctan(1+t)dt}{\frac32x^2}\\ &\lim_{x\to0}\frac{\arctan(1+x^2)\cdot2x}{3x}=\frac\pi6 \end{aligned} 1.2.3.F′(x)=f(lnx)⋅x1−f(x1)(x2−1)I=x→0lim∫0x(t+1−1)dt∫0x4+t2sin2tdt=x→0limx+1−14+x2sin2x=21x→0lim1+x−1sin2x=2令φ(u)=∫0u2arctan(1+t)dt则I=x→0limx⋅21x2∫0xφ(u)du=x→0lim23x2φ(x)x→0lim23x2∫0x2arctan(1+t)dtx→0lim3xarctan(1+x2)⋅2x=6π
拆分后再求导
题目
设 φ ( x ) 在 [ a , b ] 上 连 续 , 且 φ ( x ) > 0 , 则 函 数 y = ∫ a b ∣ x − t ∣ φ ( t ) d t , 则 ( ) A . 在 ( a , b ) 内 为 凸 B . 在 ( a , b ) 内 为 凹 C . 在 ( a , b ) 内 有 拐 点 D . 在 ( a , b ) 内 有 间 断 点 设\varphi(x)在[a,b]上连续,且\varphi(x)>0,则函数y=\int_a^b|x-t|\varphi(t)dt,则()\\ A.在(a,b)内为凸\quad B.在(a,b)内为凹 \quad C.在(a,b)内有拐点\quad D.在(a,b)内有间断点\\ 设φ(x)在[a,b]上连续,且φ(x)>0,则函数y=∫ab∣x−t∣φ(t)dt,则()A.在(a,b)内为凸B.在(a,b)内为凹C.在(a,b)内有拐点D.在(a,b)内有间断点
答案
y = ∫ a b ∣ x − t ∣ φ ( t ) d t = ∫ a x ( x − t ) φ ( t ) d t + ∫ x b ( t − x ) φ ( t ) d t = ∫ a x x φ ( t ) d t − ∫ a x t ⋅ φ ( t ) d t + ∫ x b t φ ( t ) d t − ∫ x b x φ ( t ) d t = x ∫ a x φ ( t ) d t − ∫ a x t φ ( t ) d t + ∫ x b t φ ( t ) d t − x ∫ x b φ ( t ) d t    ⟹    y ′ = ∫ a x φ ( t ) d t + x φ ( x ) − x φ ( x ) − x φ ( x ) − ∫ x b φ ( t ) d t + x φ ( x ) = ∫ a x φ ( t ) d t − ∫ x b φ ( t ) d t    ⟹    y ′ ′ = φ ( x ) + φ ( x ) = 2 φ ( 2 ) > 0 \begin{aligned} y&=\int_a^b|x-t|\varphi(t)dt\\ &=\int_a^x(x-t)\varphi(t)dt+\int_x^b(t-x)\varphi(t)dt\\ &=\int_a^xx\varphi(t)dt-\int_a^xt\cdot\varphi(t)dt+\int_x^bt\varphi(t)dt-\int_x^bx\varphi(t)dt\\ &=x\int_a^x\varphi(t)dt-\int_a^xt\varphi(t)dt+\int_x^bt\varphi(t)dt-x\int_x^b\varphi(t)dt\\ &\implies y'=\int_a^x\varphi(t)dt+x\varphi(x)-x\varphi(x)-x\varphi(x)-\int_x^b\varphi(t)dt+x\varphi(x)\\ &=\int_a^x\varphi(t)dt-\int_x^b\varphi(t)dt\implies y''=\varphi(x)+\varphi(x)=2\varphi(2)>0 \end{aligned} y=∫ab∣x−t∣φ(t)dt=∫ax(x−t)φ(t)dt+∫xb(t−x)φ(t)dt=∫axxφ(t)dt−∫axt⋅φ(t)dt+∫xbtφ(t)dt−∫xbxφ(t)dt=x∫axφ(t)dt−∫axtφ(t)dt+∫xbtφ(t)dt−x∫xbφ(t)dt⟹y′=∫axφ(t)dt+xφ(x)−xφ(x)−xφ(x)−∫xbφ(t)dt+xφ(x)=∫axφ(t)dt−∫xbφ(t)dt⟹y′′=φ(x)+φ(x)=2φ(2)>0
换元后再求导
题目
设 f ( x ) 在 [ 0 , + ∞ ) 上 可 导 , f ( 0 ) = 0 , 其 反 函 数 为 g ( x ) , 若 ∫ x x + f ( x ) g ( t − x ) d t = x 2 ln ( 1 + x ) , 求 f ( x ) 设f(x)在[0,+\infty)上可导,f(0)=0,其反函数为g(x),若\int_x^{x+f(x)}g(t-x)dt=x^2\ln(1+x),求f(x) 设f(x)在[0,+∞)上可导,f(0)=0,其反函数为g(x),若∫xx+f(x)g(t−x)dt=x2ln(1+x),求f(x)
答案
∫ x x + f ( x ) g ( t − x ) d t 令 u = t − x → ∫ 0 f ( x ) g ( u ) d u    ⟹    ∫ 0 f ( x ) g ( u ) d u = x 2 ln ( 1 + x )    ⟹    g ( f ( x ) ) ⋅ f ′ ( x ) = 2 x ln ( 1 + x ) + x 2 1 + x    ⟹    x ⋅ f ′ ( x ) = 2 x ln ( 1 + x ) + x 2 1 + x    ⟹    f ′ ( x ) = 2 ln ( 1 + x ) + x 1 + x    ⟹    f ( x ) = 2 ∫ ln ( 1 + x ) d x + ∫ x 1 + x d x = 2 ( x + 1 ) ln ( 1 + x ) − 2 ∫ ( x + 1 ) ⋅ 1 1 + x d x = 2 ( x + 1 ) ln ( 1 + x ) − 2 x + x − ln ( 1 + x ) + c 又 f ( 0 ) = 0 , 故 c = 0 则 f ( x ) = ( 2 x + 1 ) ln ( 1 + x ) − x \begin{aligned} &\int_x^{x+f(x)}g(t-x)dt\underrightarrow{令u=t-x}\int_0^{f(x)}g(u)du\\ &\implies \int_0^{f(x)}g(u)du=x^2\ln(1+x)\implies g(f(x))\cdot f'(x)=2x\ln(1+x)+\frac{x^2}{1+x}\\ &\implies x\cdot f'(x)=2x\ln(1+x)+\frac{x^2}{1+x}\\ &\implies f'(x)=2\ln(1+x)+\frac{x}{1+x}\\ &\implies f(x)=2\int\ln(1+x)dx+\int\frac{x}{1+x}dx\\ &=2(x+1)\ln(1+x)-2\int(x+1)\cdot\frac1{1+x}dx\\ &=2(x+1)\ln(1+x)-2x+x-\ln(1+x)+c\\ &又f(0)=0,故c=0\\ &则f(x)=(2x+1)\ln(1+x)-x \end{aligned} ∫xx+f(x)g(t−x)dt令u=t−x∫0f(x)g(u)du⟹∫0f(x)g(u)du=x2ln(1+x)⟹g(f(x))⋅f′(x)=2xln(1+x)+1+xx2⟹x⋅f′(x)=2xln(1+x)+1+xx2⟹f′(x)=2ln(1+x)+1+xx⟹f(x)=2∫ln(1+x)dx+∫1+xxdx=2(x+1)ln(1+x)−2∫(x+1)⋅1+x1dx=2(x+1)ln(1+x)−2x+x−ln(1+x)+c又f(0)=0,故c=0则f(x)=(2x+1)ln(1+x)−x