【数学】高昆轮高数上强化

本文深入讲解函数极限的求解方法,包括等价代换、洛必达法则等,并通过大量例题解析,帮助读者掌握极限计算技巧。同时,文章提供了导数计算、数列极限等问题的解答,适合数学学习者及高校学生参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

函数极限

1.方法:等价代换,洛必达法则,泰勒公式,导数定义,拉格朗日中值定理

2.技巧加减中把极限存在(不管是否为0)的部分拆项先算出来

乘除中把极限存在(必须不为0)的部分分离先算出来

​ **对 或 且 带 x → ∞ ( 或 + ∞ , − ∞ ) 且 带 1 x 或且带x\to\infty(或+\infty,-\infty)且带\frac1x x(+,)x1**的极限采用倒代换、抓大头、有理化、通分等

等 价 无 穷 小 x − s i n x ∼ 1 6 x 3 x − a r c s i n x ∼ − 1 6 x 3 x − t a n x ∼ − 1 3 x 3 x − a r c t a n x ∼ 1 3 x 3 x − ln ⁡ ( 1 + x ) ∼ 1 2 x 2 t a n x − s i n x ∼ 1 2 x 3 1 − c o s α x ∼ α 2 x 2 e x − 1 − x ∼ 1 2 x 2 1 + x − 1 − 1 2 x ∼ − 1 8 x 2 f ( x ) → 1 时 , ln ⁡ f ( x ) ∼ f ( x ) − 1 等价无穷小\\ x-sinx \sim\frac16x^3\qquad x-arcsinx\sim-\frac16x^3\qquad x-tanx\sim-\frac13x^3\\ x-arctanx\sim\frac13x^3\qquad x-\ln(1+x)\sim\frac12x^2\qquad tanx-sinx\sim\frac12x^3\\ 1-cos^\alpha x\sim\frac\alpha2x^2\qquad e^x-1-x\sim\frac12x^2\qquad\sqrt{1+x}-1-\frac12x\sim-\frac18x^2\\ f(x)\to1时,\ln f(x)\sim f(x)-1 xsinx61x3xarcsinx61x3xtanx31x3xarctanx31x3xln(1+x)21x2tanxsinx21x31cosαx2αx2ex1x21x21+x 121x81x2f(x)1,lnf(x)f(x)1

题目

1. lim ⁡ x → 0 1 + x − 1 − x 2 e x 2 − 1 2. lim ⁡ x → 0 e x + ln ⁡ ( 1 − x ) − 1 x − a r c t a n x 3. lim ⁡ x → 0 ( 1 + x ) 2 x − e 2 [ 1 − ln ⁡ ( 1 + x ) ] x 4. lim ⁡ x → 0 ( 1 + x 2 ) ( 1 − c o s 2 x ) − 2 x 2 x 4 5. lim ⁡ x → 0 1 − x 2 s i n 2 x − t a n 2 x x 2 [ ln ⁡ ( 1 + x ) ] 2 6. lim ⁡ x → 0 ( 3 + 2 t a n x ) x − 3 x 3 s i n 2 x + x 3 c o s 1 x 7. lim ⁡ x → ∞ e − x ( 1 + 1 x ) x 2 8. lim ⁡ x → ∞ x 2 ( a 1 x + a − 1 x − 2 ) , 其 中 常 数 a > 0 9. lim ⁡ x → 0 ( c o s x c o s 2 x ) 1 x 2 10. lim ⁡ x → ∞ ( x 6 + x 5 6 − x 6 − x 5 6 ) 11. lim ⁡ x → + ∞ [ ( x 3 + x 2 − t a n 1 x ) e 1 x − 1 + x 6 ] 12. lim ⁡ x → 0 s i n x + x 2 s i n 1 x ( 1 + c o s x ) ln ⁡ ( 1 + x ) 13. lim ⁡ x → 0 [ a x − ( 1 x 2 − a 2 ) ln ⁡ ( 1 + a x ) ] . 其 中 a ≠ 0 14. lim ⁡ x → 0 ( 1 + x ) 1 x − ( 1 + 2 x ) 1 2 x s i n x 15. lim ⁡ x → 0 1 x 3 [ ( 2 + c o s x 3 ) x − 1 ] 16. lim ⁡ x → 0 c o s x − c o s x 3 s i n 2 x 17. lim ⁡ x → 0 1 − c o s x ⋅ c o s 2 x ⋅ c o s 3 x 3 x 2 18. lim ⁡ x → 1 ( 1 − x 3 ) ( 1 − x 4 ) ⋯ ( 1 − x n ) ( 1 − x ) n − 2 \begin{aligned} &1.\lim_{x\to0}\frac{\sqrt{1+x}-1-\frac x2}{{e^x}^2-1}\\ &2.\lim_{x\to0}\frac{e^x+\ln(1-x)-1}{x-arctanx}\\ &3.\lim_{x\to0}\frac{(1+x)^{\frac2x}-e^2[1-\ln(1+x)]}{x}\\ &4.\lim_{x\to0}\frac{(1+x^2)(1-cos2x)-2x^2}{x^4}\\ &5.\lim_{x\to0}\frac{\sqrt{1-x^2}sin^2x-tan^2x}{x^2[\ln(1+x)]^2}\\ &6.\lim_{x\to0}\frac{(3+2tanx)^x-3^x}{3sin^2x+x^3cos\frac1x}\\ &7.\lim_{x\to\infty}e^{-x}(1+\frac1x)^{x^2}\\ &8.\lim_{x\to\infty}x^2(a^{\frac1x}+a^{-\frac1x}-2),其中常数a>0\\ &9.\lim_{x\to0}(\frac{cosx}{cos2x})^{\frac1{x^2}}\\ &10.\lim_{x\to\infty}(\sqrt[6]{x^6+x^5}-\sqrt[6]{x^6-x^5})\\ &11.\lim_{x\to+\infty}[(x^3+\frac x2-tan\frac1x)e^{\frac1x}-\sqrt{1+x^6}]\\ &12.\lim_{x\to0}\frac{sinx+x^2sin\frac1x}{(1+cosx)\ln(1+x)}\\ &13.\lim_{x\to0}[\frac ax-(\frac1{x^2}-a^2)\ln(1+ax)].其中a\neq0\\ &14.\lim_{x\to0}\frac{(1+x)^{\frac1x}-(1+2x)^{\frac1{2x}}}{sinx}\\ &15.\lim_{x\to0}\frac1{x^3}[(\frac{2+cosx}{3})^x-1]\\ &16.\lim_{x\to0}\frac{\sqrt{cosx}-\sqrt[3]{cosx}}{sin^2x}\\ &17.\lim_{x\to0}\frac{1-cosx\cdot\sqrt{cos2x}\cdot\sqrt[3]{cos3x}}{x^2}\\ &18.\lim_{x\to1}\frac{(1-\sqrt[3]{x})(1-\sqrt[4]x)\cdots(1-\sqrt[n]x)}{(1-x)^{n-2}} \end{aligned} 1.x0limex211+x 12x2.x0limxarctanxex+ln(1x)13.x0limx(1+x)x2e2[1ln(1+x)]4.x0limx4(1+x2)(1cos2x)2x25.x0limx2[ln(1+x)]21x2 sin2xtan2x6.x0lim3sin2x+x3cosx1(3+2tanx)x3x7.xlimex(1+x1)x28.xlimx2(ax1+ax12),a>09.x0lim(cos2xcosx)x2110.xlim(6x6+x5 6x6x5 )11.x+lim[(x3+2xtanx1)ex11+x6 ]12.x0lim(1+cosx)ln(1+x)sinx+x2sinx113.x0lim[xa(x21a2)ln(1+ax)].a̸=014.x0limsinx(1+x)x1(1+2x)2x115.x0limx31[(32+cosx)x1]16.x0limsin2xcosx 3cosx 17.x0limx21cosxcos2x 3cos3x 18.x1lim(1x)n2(13x )(14x )(1nx )

答案

1. I = lim ⁡ x → 0 − 1 8 x 2 x 2 = − 1 8 2. I = lim ⁡ x → 0 e x + ln ⁡ ( 1 + x ) − 1 1 3 x 3 = lim ⁡ x → 0 1 + 1 2 x 2 + x + 1 6 x 3 + ∘ ( x 3 ) − x − 1 2 x 2 − 1 3 x 3 + ∘ ( x 3 ) − 1 1 3 x 3 = lim ⁡ x → 0 − 1 6 x 3 1 3 x 3 = − 1 2 3. I = lim ⁡ x → 0 ( 1 + x ) 2 x − e 2 x + e 2 lim ⁡ x → 0 ln ⁡ ( 1 + x ) x = lim ⁡ x → 0 e 2 ln ⁡ ( 1 + x ) / x − e 2 x + e 2 = lim ⁡ x → 0 e 2 ( e 2 ln ⁡ ( 1 + x ) x − 2 − 1 ) x + e 2 = lim ⁡ x → 0 e ξ ( 2 ln ⁡ ( 1 + x ) x − 2 ) x + e 2 = e 2 lim ⁡ x → 0 2 ln ⁡ ( 1 + x ) x − 2 x + e 2 = 2 e 2 lim ⁡ x → 0 ln ⁡ ( 1 + x ) x − 1 x + e 2 = 2 e 2 lim ⁡ x → 0 ln ⁡ ( 1 + x ) − x x 2 + e 2 = 2 e 2 lim ⁡ x → 0 ln ⁡ ( 1 + x ) − x x 2 + e 2 = ( 2 e 2 ⋅ ( − 1 2 ) ) + e 2 d = 2 e 2 lim ⁡ x → 0 − 1 2 x 2 x 2 + e 2 = − e 2 + e 2 = 0 = 0 4. I = lim ⁡ x → 0 1 − cos ⁡ 2 x − 2 x 2 x 4 + lim ⁡ x → 0 x 2 ( 1 − c o s 2 x ) x 4 = lim ⁡ x → 0 1 − ( 1 − 1 2 ( 2 x ) 2 + 1 24 ( 2 x ) 4 + ∘ ( x 4 ) ) − 2 x 2 x 4 + 2 = lim ⁡ x → 0 − 16 24 x 4 x 4 + 2 = 4 3 5. I = lim ⁡ x → 0 1 − x 2 sin ⁡ 2 x − sin ⁡ 2 x + sin ⁡ 2 x − tan ⁡ 2 x x 4 = lim ⁡ x → 0 sin ⁡ x ( 1 − x 2 − 1 ) x 4 + lim ⁡ x → 0 sin ⁡ 2 x − tan ⁡ 2 x x 4 = − 1 2 + lim ⁡ x → 0 ( sin ⁡ x + tan ⁡ x ) ( sin ⁡ x + tan ⁡ ) x 4 = − 1 2 + lim ⁡ x → 0 ( sin ⁡ x + tan ⁡ x ) ( − 1 2 x 3 ) x 4 = − 1 2 + ( − 1 2 ) ( 1 + 1 ) = − 3 2 6. 由 x 3 cos ⁡ 1 x 3 sin ⁡ x = 1 3 lim ⁡ x → 0 x cos ⁡ 1 x = 0 则 I = lim ⁡ x → 0 3 x [ ( 1 + 2 3 tan ⁡ x ) x − 1 ] 3 x 2 = lim ⁡ x → 0 e x ln ⁡ ( 1 + 2 3 tan ⁡ x ) − 1 3 x 2 = lim ⁡ x → 0 x ln ⁡ ( 1 + 2 3 tan ⁡ x ) 3 x 2 = 2 9 7. I = lim ⁡ x → ∞ e − x e x 2 ln ⁡ ( 1 + 1 x ) = lim ⁡ x → ∞ e x 2 ln ⁡ ( 1 + 1 x ) − x 且 lim ⁡ x → ∞ ( x 2 ln ⁡ ( 1 + 1 x ) − x ) t = 1 x → lim ⁡ t → 0 ln ⁡ ( 1 + t ) t 2 − 1 t = lim ⁡ x → ∞ x 2 ( ln ⁡ ( 1 + 1 x ) − 1 x ) = lim ⁡ t → 0 ln ⁡ ( 1 + t ) − t t 2 = − 1 2 = lim ⁡ x → ∞ x 2 ( − 1 2 ) ( 1 x ) 2 = − 1 2 ∴ I = e − 1 2 8. 令 1 x = t I = lim ⁡ t → 0 1 t 2 ( a t + a − t − 2 ) = lim ⁡ t → 0 a t ln ⁡ a + a − t ⋅ ln ⁡ a − 1 2 t = ln ⁡ 2 a 9. I = e A , 其 中 A = lim ⁡ x → 0 1 x 2 ( cos ⁡ x c o s 2 x − 1 ) = lim ⁡ x → 0 cos ⁡ x − cos ⁡ 2 x x 2 cos ⁡ 2 x = lim ⁡ x → 0 cos ⁡ x − cos ⁡ 2 x x 2 = lim ⁡ x → 0 cos ⁡ x − 1 + 1 − cos ⁡ 2 x x 2 = lim ⁡ x → 0 cos ⁡ x − 1 x 2 + lim ⁡ x → 0 1 − cos ⁡ 2 x x 2 = − 1 2 + lim ⁡ x → 0 1 2 ( 2 x ) 2 x 2 = 3 2 故 I = e 3 2 10. I = lim ⁡ x → ∞ f ′ ( ξ ) ( 2 x 5 ) = lim ⁡ x → ∞ 1 6 ξ − 5 6 ( 2 x 5 ) = lim ⁡ x → ∞ 1 6 ⋅ x 6 ( − 5 6 ) ( 2 x 5 ) = lim ⁡ x → ∞ 1 6 x − 5 ( 2 x 5 ) = 1 3 11. I = lim ⁡ x → + ∞ [ ( x 3 + x 2 ) e 1 x − 1 + x 6 ] − lim ⁡ x → + ∞ tan ⁡ 1 x ⋅ e 1 x t = 1 x → lim ⁡ t → 0 + [ ( 1 t 3 + 1 2 t ) e t − 1 + 1 t 6 ] − 0 = lim ⁡ t → 0 + ( 2 + t 2 ) e t − 2 1 + t 6 + 2 − 2 2 t 3 = lim ⁡ t → 0 + ( 2 + t 2 ) e t − 2 2 t 3 − 2 lim ⁡ t → 0 + 1 + t 6 − 1 2 t 3 = lim ⁡ t → 0 + ( 2 + t 2 ) ( 1 + t + 1 2 t 2 + 1 6 t 3 + ∘ ( t 3 ) ) − 2 2 t 3 − 0 = lim ⁡ t → 0 + 2 t + 2 t 2 + 4 3 t 3 2 t 3 = ∞ 12. I = lim ⁡ x → 0 x 2 x = 1 2 13. I = lim ⁡ x → 0 [ a x − 1 x 2 ln ⁡ ( 1 + a x ) ] + a 2 lim ⁡ x → 0 ln ⁡ ( 1 + a x ) = lim ⁡ x → 0 a x − ln ⁡ ( 1 + a x ) x 2 + 0 = lim ⁡ x → 0 1 2 ( a x ) 2 x 2 = 1 2 a 2 14. I = lim ⁡ x → 0 e ln ⁡ ( 1 + x ) / x − e ln ⁡ ( 1 + 2 x ) / 2 x x = lim ⁡ x → 0 e ln ⁡ ( 1 + 2 x ) / 2 x ( e ln ⁡ ( 1 + x ) / x − ln ⁡ ( 1 + 2 x ) / 2 x − 1 ) x = e lim ⁡ x → 0 ln ⁡ ( 1 + x ) / x − ln ⁡ ( 1 + 2 x ) / 2 x x = e lim ⁡ x → 0 2 ln ⁡ ( 1 + x ) − ln ⁡ ( 1 + 2 x ) 2 x 2 = e ⋅ 2 ( x − 1 2 x 2 ) + ∘ ( x 2 ) − ( 2 x − 1 2 ( 2 x ) 2 ) − ∘ ( x 2 ) 2 x 2 = e ⋅ 1 2 = e 2 15. I = lim ⁡ x → 0 1 x 3 [ e x ln ⁡ 2 + cos ⁡ x 3 − 1 ] I = lim ⁡ x → 0 1 x 3 [ ( 1 + cos ⁡ x − 1 3 ) x − 1 ] = lim ⁡ x → 0 1 x 3 ⋅ x ln ⁡ 2 + cos ⁡ x 3 = lim ⁡ x → 0 1 x 3 ⋅ x ⋅ cos ⁡ x − 1 3 = lim ⁡ x → 0 1 x 2 ln ⁡ 2 + cos ⁡ x 3 = − 1 6 = lim ⁡ x → 0 1 x 2 ln ⁡ ( 1 + 2 + cos ⁡ x 3 − 1 ) = lim ⁡ x → 0 1 x 2 ( 2 + cos ⁡ x 3 − 1 ) = lim ⁡ x → 0 cos ⁡ x − 1 3 x 2 = − 1 6 16. I = lim ⁡ x → 0 cos ⁡ x − 1 + 1 − cos ⁡ x 3 x 2 = lim ⁡ x → 0 cos ⁡ x − 1 x 2 + lim ⁡ x → 0 1 − cos ⁡ x 3 x 2 = lim ⁡ x → 0 − 1 4 x 2 x 2 + lim ⁡ x → 0 1 6 x 2 x 2 = − 1 12 17. I = lim ⁡ x → 0 1 − cos ⁡ x + cos ⁡ x − cos ⁡ x cos ⁡ 2 x c o s 3 x 3 x 2 = lim ⁡ x → 0 1 − cos ⁡ x x 2 + cos ⁡ x − cos ⁡ x cos ⁡ 2 x cos ⁡ 3 x 3 x 2 = 1 2 + lim ⁡ x → 0 cos ⁡ x ( 1 − cos ⁡ 2 x cos ⁡ 3 x 3 ) x 2 = 1 2 + lim ⁡ x → 0 1 − cos ⁡ 2 x + cos ⁡ 2 x ( 1 − cos ⁡ 3 x 3 ) x 2 = 3 18. lim ⁡ x → 1 1 − x t 1 − x ( t = 3 , 4 , 5 , ⋯   , n ) = lim ⁡ x → 1 − 1 t x 1 t − 1 − 1 = 1 t I = 1 3 ⋅ 1 4 ⋯ 1 n = 2 n ! \begin{aligned} 1.I&=\lim_{x\to0}\frac{-\frac18x^2}{x^2}=-\frac18\\ 2.I&=\lim_{x\to0}\frac{e^x+\ln(1+x)-1}{\frac13x^3}\\ &=\lim_{x\to0}\frac{1+\frac12x^2+x+\frac16x^3+\circ(x^3)-x-\frac12x^2-\frac13x^3+\circ(x^3)-1}{\frac13x^3}\\ &=\lim_{x\to0}\frac{-\frac16x^3}{\frac13x^3}=-\frac12\\ 3.I&=\lim_{x\to0}\frac{(1+x)^{\frac2x}-e^2}{x}+e^2\lim_{x\to0}\frac{\ln(1+x)}{x}\\ &=\lim_{x\to0}\frac{e^{2\ln(1+x)/x}-e^2}{x}+e^2\\ &=\lim_{x\to0}\frac{e^2(e^{\frac{2\ln(1+x)}{x}-2}-1)}{x}+e^2 \qquad\qquad=\lim_{x\to0}\frac{e^\xi(\frac{2\ln(1+x)}x-2)}{x}+e^2\\ &=e^2\lim_{x\to0}\frac{\frac{2\ln(1+x)}{x}-2}{x}+e^2 \qquad\qquad=2e^2\lim_{x\to0}\frac{\frac{\ln(1+x)}{x}-1}{x}+e^2\\ &=2e^2\lim_{x\to0}\frac{\ln(1+x)-x}{x^2}+e^2 \qquad\qquad=2e^2\lim_{x\to0}\frac{\ln(1+x)-x}{x^2}+e^2\\ &=(2e^2\cdot(-\frac12))+e^2d \qquad\qquad=2e^2\lim_{x\to0}\frac{-\frac12x^2}{x^2}+e^2\\ &=-e^2+e^2=0\qquad \qquad\qquad=0\\ 4.I&=\lim_{x\to0}\frac{1-\cos2x-2x^2}{x^4}+\lim_{x\to0}\frac{x^2(1-cos2x)}{x^4}\\ &=\lim_{x\to0}\frac{1-(1-\frac12(2x)^2+\frac1{24}(2x)^4+\circ(x^4))-2x^2}{x^4}+2\\ &=\lim_{x\to0}\frac{-\frac{16}{24}x^4}{x^4}+2=\frac43\\ 5.I&=\lim_{x\to0}\frac{\sqrt{1-x^2}\sin^2x-\sin^2x+\sin^2x-\tan^2x}{x^4}\\ &=\lim_{x\to0}\frac{\sin^x(\sqrt{1-x^2}-1)}{x^4}+\lim_{x\to0}\frac{\sin^2x-\tan^2x}{x^4}\\ &=-\frac12+\lim_{x\to0}\frac{(\sin x+\tan x)(\sin x+\tan )}{x^4}\\ &=-\frac12+\lim_{x\to0}\frac{(\sin x+\tan x)(-\frac12x^3)}{x^4}\\ &=-\frac12+(-\frac12)(1+1)=-\frac32\\ 6.&由\frac{x^3\cos\frac1x}{3\sin^x}=\frac13\lim_{x\to0}x\cos\frac1x=0\\ &则I=\lim_{x\to0}\frac{3^x[(1+\frac23\tan x)^x-1]}{3x^2}\\ &=\lim_{x\to0}\frac{e^{x\ln(1+\frac23\tan x)}-1}{3x^2}\\ &=\lim_{x\to0}\frac{x\ln(1+\frac23\tan x)}{3x^2}=\frac29\\ 7.I&=\lim_{x\to\infty}e^{-x}e^{x^2\ln(1+\frac1x)}\\ &=\lim_{x\to\infty}e^{x^2\ln(1+\frac1x)-x}\\ &且\lim_{x\to\infty}(x^2\ln(1+\frac1x)-x)\\ &\underrightarrow{t=\frac1x}\lim_{t\to0}\frac{\ln(1+t)}{t^2}-\frac1t \qquad\qquad=\lim_{x\to\infty}x^2(\ln(1+\frac1x)-\frac1x)\\ &=\lim_{t\to0}\frac{\ln(1+t)-t}{t^2}=-\frac12 \qquad\qquad=\lim_{x\to\infty}x^2(-\frac12)(\frac1x)^2=-\frac12\\ &\therefore I=e^{-\frac12}\\ 8.&令\frac1x=t\\ I&=\lim_{t\to0}\frac1{t^2}(a^t+a^{-t}-2)\\ &=\lim_{t\to0}\frac{a^t\ln a+a^{-t}\cdot\ln a^{-1}}{2t}\\ &=\ln^2a\\ 9.I&=e^A,其中A=\lim_{x\to0}\frac1{x^2}(\frac{\cos x}{cos2x}-1)\\ &=\lim_{x\to0}\frac{\cos x-\cos2x}{x^2\cos2x}\\ &=\lim_{x\to0}\frac{\cos x-\cos2x}{x^2}\\ &=\lim_{x\to0}\frac{\cos x-1+1-\cos2x}{x^2}\\ &=\lim_{x\to0}\frac{\cos x-1}{x^2}+\lim_{x\to0}\frac{1-\cos2x}{x^2}\\ &=-\frac12+\lim_{x\to0}\frac{\frac12(2x)^2}{x^2}\\ &=\frac32\quad 故I=e^{\frac32}\\ 10.I&=\lim_{x\to\infty}f'(\xi)(2x^5)\\ &=\lim_{x\to\infty}\frac16\xi^{-\frac56}(2x^5)\\ &=\lim_{x\to\infty}\frac16\cdot x^{6(-\frac56)}(2x^5)\\ &=\lim_{x\to\infty}\frac16x^{-5}(2x^5)=\frac13\\ 11.I&=\lim_{x\to+\infty}[(x^3+\frac x2)e^{\frac1x}-\sqrt{1+x^6}]-\lim_{x\to+\infty}\tan\frac1x\cdot e^{\frac1x}\\ &\underrightarrow{t=\frac1x}\lim_{t\to0^+}[(\frac1{t^3}+\frac1{2t})e^t-\sqrt{1+\frac1{t^6}}]-0\\ &=\lim_{t\to0^+}\frac{(2+t^2)e^t-2\sqrt{1+t^6}+2-2}{2t^3}\\ &=\lim_{t\to0^+}\frac{(2+t^2)e^t-2}{2t^3}-2\lim_{t\to0^+}\frac{\sqrt{1+t^6}-1}{2t^3}\\ &=\lim_{t\to0^+}\frac{(2+t^2)(1+t+\frac12t^2+\frac16t^3+\circ(t^3))-2}{2t^3}-0\\ &=\lim_{t\to0^+}\frac{2t+2t^2+\frac43t^3}{2t^3}=\infty\\ 12.I&=\lim_{x\to0}\frac{x}{2x}=\frac12\\ 13.I&=\lim_{x\to0}[\frac ax-\frac1{x^2}\ln(1+ax)]+a^2\lim_{x\to0}\ln(1+ax)\\ &=\lim_{x\to0}\frac{ax-\ln(1+ax)}{x^2}+0\\ &=\lim_{x\to0}\frac{\frac12(ax)^2}{x^2}=\frac12a^2\\ 14.I&=\lim_{x\to0}\frac{e^{\ln(1+x)/x}-e^{\ln(1+2x)/2x}}{x}\\ &=\lim_{x\to0}\frac{e^{\ln(1+2x)/2x}(e^{\ln(1+x)/x-\ln(1+2x)/2x}-1)}x\\ &=e\lim_{x\to0}\frac{\ln(1+x)/x-\ln(1+2x)/2x}{x}\\ &=e\lim_{x\to0}\frac{2\ln(1+x)-\ln(1+2x)}{2x^2}\\ &=e\cdot\frac{2(x-\frac12x^2)+\circ(x^2)-(2x-\frac12(2x)^2)-\circ(x^2)}{2x^2}\\ &=e\cdot\frac12=\frac e2\\ 15.I&=\lim_{x\to0}\frac1{x^3}[e^{x\ln\frac{2+\cos x}{3}}-1]\qquad\qquad I=\lim_{x\to0}\frac1{x^3}[(1+\frac{\cos x-1}{3})^x-1]\\ &=\lim_{x\to0}\frac1{x^3}\cdot x\ln{\frac{2+\cos x}{3}} \qquad\qquad =\lim_{x\to0}\frac1{x^3}\cdot x\cdot \frac{\cos x-1}3\\ &=\lim_{x\to0}\frac1{x^2}\ln{\frac{2+\cos x}3} \qquad\qquad =-\frac16\\ &=\lim_{x\to0}\frac1{x^2}\ln(1+\frac{2+\cos x}{3}-1)\\ &=\lim_{x\to0}\frac1{x^2}(\frac{2+\cos x}3-1)\\ &=\lim_{x\to0}\frac{\cos x-1}{3x^2}=-\frac16\\ 16.I&=\lim_{x\to0}\frac{\sqrt{\cos x}-1+1-\sqrt[3]{\cos x}}{x^2}\\ &=\lim_{x\to0}\frac{\sqrt{\cos x}-1}{x^2}+\lim_{x\to0}\frac{1-\sqrt[3]{\cos x}}{x^2}\\ &=\lim_{x\to0}\frac{-\frac14x^2}{x^2}+\lim_{x\to0}\frac{\frac16x^2}{x^2}\\ &=-\frac1{12}\\ 17.I&=\lim_{x\to0}\frac{1-\cos x+\cos x-\cos x\sqrt{\cos2x}\sqrt[3]{cos3x}}{x^2}\\ &=\lim_{x\to0}\frac{1-\cos x}{x^2}+\frac{\cos x-\cos x\sqrt{\cos2x}\sqrt[3]{\cos3x}}{x^2}\\ &=\frac12+\lim_{x\to0}\frac{\cos x(1-\sqrt{\cos2x}\sqrt[3]{\cos3x})}{x^2}\\ &=\frac12+\lim_{x\to0}\frac{1-\sqrt{\cos2x}+\sqrt{\cos2x}(1-\sqrt[3]{\cos3x})}{x^2}\\ &=3\\ 18.&\lim_{x\to1}\frac{1-\sqrt[t]{x}}{1-x}(t=3,4,5,\cdots,n)\\ &=\lim_{x\to1}\frac{-\frac1tx^{\frac1t-1}}{-1}=\frac1t\\ I&=\frac13\cdot\frac14\cdots\frac1n=\frac2{n!}\\ \end{aligned} 1.I2.I3.I4.I5.I6.7.I8.I9.I10.I11.I12.I13.I14.I15.I16.I17.I18.I=x0limx281x2=81=x0lim31x3ex+ln(1+x)1=x0lim31x31+21x2+x+61x3+(x3)x21x231x3+(x3)1=x0lim31x361x3=21=x0limx(1+x)x2e2+e2x0limxln(1+x)=x0limxe2ln(1+x)/xe2+e2=x0limxe2(ex2ln(1+x)21)+e2=x0limxeξ(x2ln(1+x)2)+e2=e2x0limxx2ln(1+x)2+e2=2e2x0limxxln(1+x)1+e2=2e2x0limx2ln(1+x)x+e2=2e2x0limx2ln(1+x)x+e2=(2e2(21))+e2d=2e2x0limx221x2+e2=e2+e2=0=0=x0limx41cos2x2x2+x0limx4x2(1cos2x)=x0limx41(121(2x)2+241(2x)4+(x4))2x2+2=x0limx42416x4+2=34=x0limx41x2 sin2xsin2x+sin2xtan2x=x0limx4sinx(1x2 1)+x0limx4sin2xtan2x=21+x0limx4(sinx+tanx)(sinx+tan)=21+x0limx4(sinx+tanx)(21x3)=21+(21)(1+1)=233sinxx3cosx1=31x0limxcosx1=0I=x0lim3x23x[(1+32tanx)x1]=x0lim3x2exln(1+32tanx)1=x0lim3x2xln(1+32tanx)=92=xlimexex2ln(1+x1)=xlimex2ln(1+x1)xxlim(x2ln(1+x1)x) t=x1t0limt2ln(1+t)t1=xlimx2(ln(1+x1)x1)=t0limt2ln(1+t)t=21=xlimx2(21)(x1)2=21I=e21x1=t=t0limt21(at+at2)=t0lim2tatlna+atlna1=ln2a=eA,A=x0limx21(cos2xcosx1)=x0limx2cos2xcosxcos2x=x0limx2cosxcos2x=x0limx2cosx1+1cos2x=x0limx2cosx1+x0limx21cos2x=21+x0limx221(2x)2=23I=e23=xlimf(ξ)(2x5)=xlim61ξ65(2x5)=xlim61x6(65)(2x5)=xlim61x5(2x5)=31=x+lim[(x3+2x)ex11+x6 ]x+limtanx1ex1 t=x1t0+lim[(t31+2t1)et1+t61 ]0=t0+lim2t3(2+t2)et21+t6 +22=t0+lim2t3(2+t2)et22t0+lim2t31+t6 1=t0+lim2t3(2+t2)(1+t+21t2+61t3+(t3))20=t0+lim2t32t+2t2+34t3==x0lim2xx=21=x0lim[xax21ln(1+ax)]+a2x0limln(1+ax)=x0limx2axln(1+ax)+0=x0limx221(ax)2=21a2=x0limxeln(1+x)/xeln(1+2x)/2x=x0limxeln(1+2x)/2x(eln(1+x)/xln(1+2x)/2x1)=ex0limxln(1+x)/xln(1+2x)/2x=ex0lim2x22ln(1+x)ln(1+2x)=e2x22(x21x2)+(x2)(2x21(2x)2)(x2)=e21=2e=x0limx31[exln32+cosx1]I=x0limx31[(1+3cosx1)x1]=x0limx31xln32+cosx=x0limx31x3cosx1=x0limx21ln32+cosx=61=x0limx21ln(1+32+cosx1)=x0limx21(32+cosx1)=x0lim3x2cosx1=61=x0limx2cosx 1+13cosx =x0limx2cosx 1+x0limx213cosx =x0limx241x2+x0limx261x2=121=x0limx21cosx+cosxcosxcos2x 3cos3x =x0limx21cosx+x2cosxcosxcos2x 3cos3x =21+x0limx2cosx(1cos2x 3cos3x )=21+x0limx21cos2x +cos2x (13cos3x )=3x1lim1x1tx (t=3,4,5,,n)=x1lim1t1xt11=t1=3141n1=n!2

数列极限

1.方法:转化为函数极限(求导、洛必达、拉格朗日中值定理),先求和(积)、夹逼准则、定积分定义、单调有界法则

2.技巧:夹逼准则的套路,单调有界的套路,先求极限再证明的套路

3.总结:数列的构造法

题目

部分题目之前已总结,请去数列极限查看。
1. lim ⁡ n → ∞ n 3 ( s i n 1 n − 1 2 s i n 2 n ) 2. lim ⁡ n → ∞ n 2 ( a r c t a n a n − a r c t a n a n + 1 ) , a > 0 3. lim ⁡ n → ∞ n 99 n k − ( n − 1 ) k 存 在 且 不 为 0 , 则 常 数 k = ‾ \begin{aligned} &1.\lim_{n\to\infty}n^3(sin\frac1n-\frac12sin\frac2n)\\ &2.\lim_{n\to\infty}n^2(arctan\frac an-arctan\frac a{n+1}),a>0\\ &3.\lim_{n\to\infty}\frac{n^{99}}{n^k-(n-1)^k}存在且不为0,则常数k=\underline{\qquad}\\ \end{aligned} 1.nlimn3(sinn121sinn2)2.nlimn2(arctannaarctann+1a),a>03.nlimnk(n1)kn990k=

答案

1. I = lim ⁡ n → ∞ n 3 ( sin ⁡ 1 n − 1 2 sin ⁡ 2 n ) = lim ⁡ n → ∞ n 3 ( sin ⁡ 1 n − 1 n ) + lim ⁡ n → ∞ n 3 ( 1 n − 1 2 sin ⁡ 2 n ) = − 1 6 + lim ⁡ n → ∞ 1 2 ⋅ n 3 ( 2 n − sin ⁡ f r a c 2 n ) = 1 2 2. I = lim ⁡ n → ∞ n 2 ( f ′ ( ξ ) ⋅ ( a n − a n + 1 ) ) = lim ⁡ n → ∞ n 2 ⋅ 1 1 + ξ 2 ( a n − a n + 1 ) = lim ⁡ n → ∞ a ( n + 1 ) − a n n ( n + 1 ) ⋅ n 2 = a 3. I = lim ⁡ n → ∞ n 99 n k ( 1 − ( 1 − 1 n ) k ) = lim ⁡ n → ∞ n 99 n k ( − k ) ( − 1 n ) = lim ⁡ n → ∞ n 99 k n k − 1 = c ≠ 0    ⟹    k − 1 = 99 \begin{aligned} 1.I&=\lim_{n\to\infty}n^3(\sin{\frac1n}-\frac12\sin{\frac2n})\\ &=\lim_{n\to\infty}n^3(\sin{\frac1n}-\frac1n)+\lim_{n\to\infty}n^3(\frac1n-\frac12\sin{\frac2n})\\ &=-\frac16+\lim_{n\to\infty}\frac12\cdot n^3(\frac2n-\sin{frac2n})\\ &=\frac12\\ 2.I&=\lim_{n\to\infty}n^2(f'(\xi)\cdot(\frac an-\frac a{n+1}))\\ &=\lim_{n\to\infty}n^2\cdot\frac1{1+{\xi}^2}(\frac an-\frac a{n+1})\\ &=\lim_{n\to\infty}\frac{a(n+1)-an}{n(n+1)}\cdot n^2=a\\ 3.I&=\lim_{n\to\infty}\frac{n^{99}}{n^k(1-(1-\frac1n)^k)}\\ &=\lim_{n\to\infty}\frac{n^{99}}{n^k(-k)(-\frac1n)}\\ &=\lim_{n\to\infty}\frac{n^{99}}{kn^{k-1}}=c\neq0\implies k-1=99\\ \end{aligned} 1.I2.I3.I=nlimn3(sinn121sinn2)=nlimn3(sinn1n1)+nlimn3(n121sinn2)=61+nlim21n3(n2sinfrac2n)=21=nlimn2(f(ξ)(nan+1a))=nlimn21+ξ21(nan+1a)=nlimn(n+1)a(n+1)ann2=a=nlimnk(1(1n1)k)n99=nlimnk(k)(n1)n99=nlimknk1n99=c̸=0k1=99

导数计算

题目

1. 设 y = e x 2 , 求 d y d x , d y d ( x 2 ) , d 2 y d x 2 2. 设 f ( x ) = ( c o s x − 4 ) s i n x + 3 x , 求 d f ( x ) d ( x 2 ) 3. 设 f ′ ( 0 ) = 1 , f ′ ′ ( 0 ) = 0 , 求 证 : 在 x = 0 处 , 有 d 2 d x 2 f ( x 2 ) = d 2 d x 2 f 2 ( x ) 4. 已 知 可 微 函 数 y = y ( x ) , 由 方 程 y = − y e x + 2 e y s i n x − 7 x 所 确 定 , 求 y ′ ′ ( 0 ) 5. 设 函 数 y = y ( x ) 由 参 数 方 程 { x = 1 + t 2 y = c o s t 所 确 定 , 求 d y d x 和 d 2 y d x 2 6. 设 y = x 3 + 3 x + 1 , 则 d x d y ∣ y = 1 = ‾ 7. x = f ( y ) 是 函 数 y = x + ln ⁡ x 的 反 函 数 , 求 d 2 f d y 2 8. 设 f ( x ) = ( 1 + x ) x e x − 1 + a r c s i n 1 − x 1 + x 2 , 求 f ′ ( 1 ) \begin{aligned} &1.设y=e^{x^2},求\frac{dy}{dx},\frac{dy}{d(x^2)},\frac{d^2y}{dx^2}\\ &2.设f(x)=(cosx-4)sinx+3x,求\frac{df(x)}{d(x^2)}\\ &3.设f'(0)=1,f''(0)=0,求证:在x=0处,有\frac{d^2}{dx^2}f(x^2)=\frac{d^2}{dx^2}f^2(x)\\ &4.已知可微函数y=y(x),由方程y=-ye^x+2e^ysinx-7x所确定,求y''(0)\\ &5.设函数y=y(x)由参数方程\begin{cases}x=1+t^2\\y=cost\end{cases}所确定,求\frac{dy}{dx}和\frac{d^2y}{dx^2}\\ &6.设y=x^3+3x+1,则\frac{dx}{dy}|_{y=1}=\underline{\qquad}\\ &7.x=f(y)是函数y=x+\ln x的反函数,求\frac{d^2f}{dy^2}\\ &8.设f(x)=\sqrt{\frac{(1+x)\sqrt x}{e^{x-1}}}+arcsin\frac{1-x}{\sqrt{1+x^2}},求f'(1) \end{aligned} 1.y=ex2,dxdy,d(x2)dy,dx2d2y2.f(x)=(cosx4)sinx+3x,d(x2)df(x)3.f(0)=1,f(0)=0,x=0dx2d2f(x2)=dx2d2f2(x)4.y=y(x),y=yex+2eysinx7xy(0)5.y=y(x){x=1+t2y=costdxdydx2d2y6.y=x3+3x+1,dydxy=1=7.x=f(y)y=x+lnxdy2d2f8.f(x)=ex1(1+x)x +arcsin1+x2 1x,f(1)

答案

1. d y d x = y ′ = e x 2 ⋅ 2 x d 2 y d x 2 = y ′ ′ = e x 2 ⋅ 4 x 2 + e x 2 ⋅ 2 d y d ( x 2 ) = e x 2 ⋅ 2 x d x 2 x d x = e x 2 d y 2 x d x = 1 2 x ⋅ e x 2 ⋅ 2 x = e x 2 2. d f ( a ) = f ′ ( x ) d x = ( − sin ⁡ 2 x + ( cos ⁡ x − 4 ) ⋅ cos ⁡ x + 3 ) d x d ( x 2 ) = 2 x d x ∴ d f ( x ) d ( x 2 ) = − sin ⁡ 2 x + ( cos ⁡ x − 4 ) cos ⁡ x + 3 2 x = ( cos ⁡ x − 1 ) 2 x 3. y 1 ′ = f ′ ( x 2 ) ⋅ 2 x , y 1 ′ ′ ∣ 0 = f ′ ′ ( x 2 ) ⋅ 2 x ⋅ 2 x + f ′ ( x 2 ) ⋅ 2 ∣ x = 0 = 2 y 2 ′ = 2 f ( x ) ⋅ f ′ ( x ) , y 2 ′ ′ ∣ 0 = 2 f ′ ( x ) f ′ ( x ) + 2 f ( x ) f ′ ′ ( x ) ∣ x = 0 = 2 4. y = − y e x + 2 e y sin ⁡ x − 7 x    ⟹    y ′ = − y ′ e x − y e x + 2 e y sin ⁡ x ⋅ y ′ + 2 e y ⋅ cos ⁡ x − 7    ⟹    y ′ ′ = − y ′ ′ e x − y ′ e x − y ′ e x − y e x + 2 e y ⋅ ( y ′ ) 2 sin ⁡ x + 2 e y cos ⁡ x ⋅ y ′ + 2 e y sin ⁡ x ⋅ y ′ ′ + 2 e y ⋅ y ′ cos ⁡ x − 2 e y sin ⁡ x 由 x = 0 代 入 , 分 别 得 : { y = 0 y ′ = − 5 2 y ′ ′ = − 5 2 5. d y d x = y t ′ x t ′ = − sin ⁡ t 2 t d 2 y d x 2 = d d t ( − sin ⁡ t 2 t ) d t d x = − cos ⁡ t ⋅ 2 t + sin ⁡ t ⋅ 2 4 t 2 ⋅ 1 2 t 6. d x d y ∣ y = 1 = 1 y x ′ ∣ x = 0 = 1 3 x 2 + 3 ∣ x = 0 = 1 3 7. x y ′ = 1 y x ′ , x y ′ ′ = − y x ′ ′ ( y x ′ ) 3 有 y x ′ = 1 + 1 x , y x ′ ′ = − 1 x 2 , x y ′ ′ = − y x ′ ′ ( y x ′ ) 3 = − − 1 / x 2 ( 1 + 1 x ) 3 = x ( 1 + x ) 3 8. 令 y 1 = ( 1 + x ) x e x − 1    ⟹    ln ⁡ y 1 = 1 2 ( ln ⁡ ( 1 + x ) + 1 2 ln ⁡ x − ( x − 1 ) )    ⟹    1 y 1 ⋅ y 1 ′ ′ = 1 2 ( 1 1 + x + 1 2 x − 1 )    ⟹    y 1 ′ ( 1 ) 代 入 → 0 令 y 2 = arcsin ⁡ 1 − x 1 + x 2    ⟹    y 2 ′ ( 1 ) = lim ⁡ x → 1 y 2 ( x ) − y 2 ( 1 ) x − 1 = lim ⁡ x → 1 arcsin ⁡ 1 − x 1 + x 2 − 0 x − 1 = lim ⁡ x → 1 1 − x 1 + x 2 x − 1 = − 2 2 故 f ′ ( 1 ) = − 2 2 \begin{aligned} 1.&\frac{dy}{dx}=y'=e^{x^2}\cdot2x\\ &\frac{d^2y}{dx^2}=y^{''}=e^{x^2}\cdot4x^2+e^{x^2}\cdot2\\ &\frac{dy}{d(x^2)}=\frac{e^{x^2}\cdot2xdx}{2xdx}=e^{x^2}\qquad\frac{dy}{2xdx}=\frac1{2x}\cdot e^{x^2}\cdot2x=e{x^2}\\ 2.&df(a)=f'(x)dx=(-\sin^2x+(\cos x-4)\cdot\cos x+3)dx\\ &d(x^2)=2xdx\\ \therefore & \frac{df(x)}{d(x^2)}=\frac{-\sin^2x+(\cos x-4)\cos x+3}{2x}=\frac{(\cos x-1)^2}{x}\\ 3.&y_1'=f'(x^2)\cdot2x,y_1^{''}|_0=f''(x^2)\cdot2x\cdot2x+f'(x^2)\cdot2|_{x=0}=2\\ &y_2'=2f(x)\cdot f'(x),y_2^{''}|_0=2f'(x)f'(x)+2f(x)f''(x)|_{x=0}=2\\ 4.&y=-ye^x+2e^y\sin x-7x\\ &\implies y'=-y'e^x-ye^x+2e^y\sin x\cdot y'+2e^y\cdot \cos x-7\\ &\implies y''=-y''e^x-y'e^x-y'e^x-ye^x+2e^y\cdot(y')^2\sin x+\\ &2e^y\cos x\cdot y'+2e^y\sin x\cdot y''+2e^y\cdot y'\cos x-2e^y\sin x\\ &由x=0代入,分别得:\begin{cases}y=0\\y'=-\frac52\\y''=-\frac52\end{cases}\\ 5.&\frac{dy}{dx}=\frac{y'_t}{x'_t}=\frac{-\sin t}{2t}\\ &\frac{d^2y}{dx^2}=\frac{d}{dt}(\frac{-\sin t}{2t})\frac{dt}{dx}=\frac{-\cos t\cdot2t+\sin t\cdot2}{4t^2}\cdot\frac{1}{2t}\\ 6.&\frac{dx}{dy}|_{y=1}=\frac1{y'_x}|_{x=0}=\frac1{3x^2+3}|_{x=0}=\frac13\\ 7.&x'_y=\frac1y'_x,x''_y=-\frac{y''_x}{(y'_x)^3}\\ &有y'_x=1+\frac1x,y''_x=-\frac1{x^2},x''_y=-\frac{y''_x}{(y'_x)^3}=-\frac{-1/x^2}{(1+\frac1x)^3}=\frac{x}{(1+x)^3}\\ 8.&令y_1=\sqrt{\frac{(1+x)\sqrt x}{e^{x-1}}}\implies\ln{y_1}=\frac12(\ln(1+x)+\frac12\ln x-(x-1))\\ &\implies\frac1{y_1}\cdot y_1''=\frac12(\frac1{1+x}+\frac1{2x}-1)\\ &\implies y'_1(1)\underrightarrow{代入}0\\ &令y_2=\arcsin\frac{1-x}{\sqrt{1+x^2}}\implies y_2'(1)=\lim_{x\to1}\frac{y_2(x)-y_2(1)}{x-1}\\ &=\lim_{x\to1}\frac{\arcsin\frac{1-x}{\sqrt{1+x^2}}-0}{x-1}=\lim_{x\to1}\frac{\frac{1-x}{\sqrt{1+x^2}}}{x-1}=-\frac{\sqrt2}{2}\\ &故f'(1)=-\frac{\sqrt2}2 \end{aligned} 1.2.3.4.5.6.7.8.dxdy=y=ex22xdx2d2y=y=ex24x2+ex22d(x2)dy=2xdxex22xdx=ex22xdxdy=2x1ex22x=ex2df(a)=f(x)dx=(sin2x+(cosx4)cosx+3)dxd(x2)=2xdxd(x2)df(x)=2xsin2x+(cosx4)cosx+3=x(cosx1)2y1=f(x2)2x,y10=f(x2)2x2x+f(x2)2x=0=2y2=2f(x)f(x),y20=2f(x)f(x)+2f(x)f(x)x=0=2y=yex+2eysinx7xy=yexyex+2eysinxy+2eycosx7y=yexyexyexyex+2ey(y)2sinx+2eycosxy+2eysinxy+2eyycosx2eysinxx=0y=0y=25y=25dxdy=xtyt=2tsintdx2d2y=dtd(2tsint)dxdt=4t2cost2t+sint22t1dydxy=1=yx1x=0=3x2+31x=0=31xy=y1x,xy=(yx)3yxyx=1+x1,yx=x21,xy=(yx)3yx=(1+x1)31/x2=(1+x)3xy1=ex1(1+x)x lny1=21(ln(1+x)+21lnx(x1))y11y1=21(1+x1+2x11)y1(1) 0y2=arcsin1+x2 1xy2(1)=x1limx1y2(x)y2(1)=x1limx1arcsin1+x2 1x0=x1limx11+x2 1x=22 f(1)=22

导数应用

1.切线问题——曲线的构造(显式、隐式、参数方程、极坐标)

2.性态问题——函数的构造(常规函数如显隐参极分变限),用极限 lim ⁡ n → ∞ \lim_{n\to\infty} limn,用定积分定义,用微分方程的解,用行列式

3.渐近线、曲率、变化率问题——记好公式

题目

1. 若 曲 线 C : f ( x ) 由 方 程 2 x − y = 2 a r c t a n ( y − x ) 确 定 , 则 曲 线 在 点 ( 1 + 2 π , 2 + π 2 ) 的 切 线 方 程 是 ‾ 2. 已 知 两 条 曲 线 由 y = f ( x ) 与 x y + e x + y = 1 所 确 定 , 且 在 点 ( 0 , 0 ) 处 的 切 线 相 同 , 写 出 此 切 线 方 程 , 求 极 限 lim ⁡ n → 0 n f ( 2 n ) 3. 使 曲 线 f ( x ) = x n 在 点 ( 1 , 1 ) 处 的 切 线 与 x 轴 的 交 点 为 ( x n , 0 ) , n = 1 , 2 , ⋯ &ThinSpace; , 求 lim ⁡ n → ∞ f ( x n ) 4. 求 双 曲 线 y 1 = 1 x 与 抛 物 线 y 2 = x 的 交 角 5. 求 函 数 f ( x ) = ∣ x ∣ e − ∣ x − 1 ∣ 的 极 值 6. 设 正 值 函 数 f ( x ) 在 ( 1 , + ∞ ) 内 连 续 , 求 函 数 F ( x ) = ∫ 1 x [ ( 2 x + ln ⁡ x ) − ( 2 t + ln ⁡ t ) ] f ( t ) d t 的 最 小 值 点 7. 设 f ( x ) = { lim ⁡ n → ∞ 1 n ( 1 + c o s x n + c o s 2 x n + ⋯ + c o s n − 1 n x ) , x &gt; 0 1 , x = 0 f ( − x ) , x &lt; 0 ( 1 ) 求 f ′ ( 0 ) ( 2 ) 求 f ( x ) 在 [ − π , π ] 上 的 最 大 值 8. 已 知 f ′ ( − x ) = x [ f ′ ( x ) + 1 ] , 求 f ( x ) 的 极 值 点 , 并 说 明 是 极 大 值 点 还 是 极 小 值 点 9. 讨 论 常 数 a 的 值 , 确 定 曲 线 y = a e x 与 y = 1 + x 的 公 共 点 的 个 数 10. 设 f ( x ) 可 导 , 证 明 : f ( x ) 的 两 个 零 点 之 间 一 定 有 f ( x ) + f ′ ( x ) 的 零 点 11. 设 x ∈ ( 0 , 1 ) , 证 明 下 面 不 等 式 : ( 1 ) ( 1 + x ) ln ⁡ 2 ( 1 + x ) &lt; x 2 ( 2 ) 1 ln ⁡ 2 − 1 &lt; 1 ln ⁡ ( 1 + x ) − 1 x &lt; 1 2 12. 已 知 f ( x ) 二 阶 可 导 , 且 f ( x ) &gt; 0 , f ( x ) ⋅ f ′ ′ ( x ) − [ f ′ ( x ) ] 2 ≥ 0 ( x ∈ R ) ( 1 ) 证 明 f ( x 1 ) ⋅ f ( x 2 ) ≥ f 2 ( x 1 + x 2 2 ) ( x 1 , x 2 ∈ R ) ( 2 ) 若 f ( 0 ) = 1 , 证 明 f ( x ) ≥ e f ′ ( 0 ) x ( x ∈ R ) \begin{aligned} &amp;1.若曲线C:f(x)由方程2x-y=2arctan(y-x)确定,则曲线在点(1+\frac2\pi,2+\frac\pi2)的切线方程是\underline{\qquad}\\ &amp;2.已知两条曲线由y=f(x)与xy+e^{x+y}=1所确定,且在点(0,0)处的切线相同,写出此切线方程,求极限\lim_{n\to0}nf(\frac2n)\\ &amp;3.使曲线f(x)=x^n在点(1,1)处的切线与x轴的交点为(x_n,0),n=1,2,\cdots,求\lim_{n\to\infty}f(x_n)\\ &amp;4.求双曲线y_1=\frac1x与抛物线y_2=\sqrt x的交角\\ &amp;5.求函数f(x)=|x|e^{-|x-1|}的极值\\ &amp;6.设正值函数f(x)在(1,+\infty)内连续,求函数F(x)=\int_1^x[(\frac2x+\ln x)-(\frac2t+\ln t)]f(t)dt的最小值点\\ &amp;7.设f(x)=\begin{cases}\lim_{n\to\infty}\frac1n(1+cos\frac xn+cos\frac{2x}n+\cdots+cos\frac{n-1}nx),x&gt;0\\1,x=0\\f(-x),x&lt;0\end{cases}\\ &amp;(1)求f&#x27;(0)\qquad(2)求f(x)在[-\pi,\pi]上的最大值\\ &amp;8.已知f&#x27;(-x)=x[f&#x27;(x)+1],求f(x)的极值点,并说明是极大值点还是极小值点\\ &amp;9.讨论常数a的值,确定曲线y=ae^x与y=1+x的公共点的个数\\ &amp;10.设f(x)可导,证明:f(x)的两个零点之间一定有f(x)+f&#x27;(x)的零点\\ &amp;11.设x\in(0,1),证明下面不等式:(1)(1+x)\ln^2(1+x)&lt;x^2\quad (2)\frac1{\ln2}-1&lt;\frac1{\ln(1+x)}-\frac1x&lt;\frac12\\ &amp;12.已知f(x)二阶可导,且f(x)&gt;0,f(x)\cdot f&#x27;&#x27;(x)-[f&#x27;(x)]^2\geq0(x\in R)\\ &amp;(1)证明f(x_1)\cdot f(x_2)\geq f^2(\frac{x_1+x_2}{2})(x_1,x_2\in R)\\ &amp;(2)若f(0)=1,证明f(x)\geq e^{f&#x27;(0)x}(x\in R) \end{aligned} 1.线C:f(x)2xy=2arctan(yx)线(1+π2,2+2π)线2.线y=f(x)xy+ex+y=1(0,0)线线n0limnf(n23.使线f(x)=xn(1,1)线x(xn,0),n=1,2,,nlimf(xn)4.线y1=x1线y2=x 5.f(x)=xex16.f(x)(1,+)F(x)=1x[(x2+lnx)(t2+lnt)]f(t)dt7.f(x)=limnn1(1+cosnx+cosn2x++cosnn1x),x>01,x=0f(x),x<0(1)f(0)(2)f(x)[π,π]8.f(x)=x[f(x)+1],f(x)9.a线y=aexy=1+x10.f(x)f(x)f(x)+f(x)11.x(0,1),1(1+x)ln2(1+x)<x2(2)ln211<ln(1+x)1x1<2112.f(x)f(x)>0,f(x)f(x)[f(x)]20(xR)(1)f(x1)f(x2)f2(2x1+x2)(x1,x2R)(2)f(0)=1,f(x)ef(0)x(xR)

答案

1. 2 − y ′ = 2 1 + ( y − x ) 2 ( y ′ − 1 ) &ThickSpace; ⟹ &ThickSpace; k = y ′ ∣ p = 3 2 &ThickSpace; ⟹ &ThickSpace; y − ( 2 + π 2 ) = 3 2 ( x − ( 1 + π 2 ) ) 2. 由 x y + e x + y = 1 , 知 y + x y ′ + e x + y ( 1 + y ′ ) = 0 &ThickSpace; ⟹ &ThickSpace; y ′ ( 0 ) = − 1 = k , ∴ y − 0 = − x &ThickSpace; ⟹ &ThickSpace; I = lim ⁡ n → ∞ f ( 2 n ) 1 n = lim ⁡ n → ∞ f ( 0 + 2 n ) − f ( 0 ) 2 n ⋅ 2 = 2 f ′ ( 0 ) = − 2 3. f ′ ( x ) = n x n − 1 &ThickSpace; ⟹ &ThickSpace; k = n , 故 y − 1 = n ( x − 1 ) &ThickSpace; ⟹ &ThickSpace; x n = 1 − 1 n 故 I = lim ⁡ n → ∞ f ( x n ) = lim ⁡ n → ∞ ( 1 − 1 n ) n = e A = e − 1 其 中 A = lim ⁡ n → ∞ n ( 1 − 1 n − 1 ) = − 1 4. 交 点 ( 1 , 1 ) , y 1 ′ ( 1 ) = ( − 1 x 2 ) ∣ x = 1 = − 1 = tan ⁡ α y 2 ′ ( 1 ) = ( 1 2 x ) ∣ x = 1 = 1 2 = tan ⁡ β &ThickSpace; ⟹ &ThickSpace; r = α − β = 3 4 π − arctan ⁡ 1 2 5. f ( x ) = { − x e x − 1 , x &lt; 0 0 , x = 0 x e x − 1 , 0 &lt; x &lt; 1 1 , x = 1 x e 1 − x , x &gt; 1 f ′ ( x ) = { − e x − 1 − x e x − 1 , x &lt; 0 e x − 1 + x e x − 1 , 0 &lt; x &lt; 1 e 1 − x − x e 1 x , x &gt; 1 f ( ′ 0 ) = − e − 1 , f + ′ ( 0 ) = e − 1 , ∴ f ′ ( 0 ) 不 存 在 f ( ′ 1 ) = 2 , f + ′ ( 1 ) = 0 , ∴ f ′ ( 1 ) 不 存 在 知 x 1 = − 1 , x 2 = 0 , x 3 = 1 , 则 x 1 = − 1 为 极 大 点 , x 2 = 0 为 极 小 点 , x 3 = 1 为 极 大 点 6. F ( x ) = ∫ 1 x ( 2 x + ln ⁡ x ) f ( t ) d t − ∫ 1 x ( 2 t + ln ⁡ t ) f ( t ) d t = ( 2 x + ln ⁡ x ) ∫ 1 x f ( t ) d t − ∫ 1 x ( 2 t + ln ⁡ t ) f ( t ) d t &ThickSpace; ⟹ &ThickSpace; F ′ ( x ) = ( − 2 x 2 + 1 x ) ∫ 1 x f ( t ) d t + ( 2 x + ln ⁡ x ) F ( x ) − ( 2 x + ln ⁡ x ) f ( x ) 由 F ′ ( x ) = 0 知 x = 2 是 唯 一 极 小 值 点 , ∴ x = 2 是 最 小 值 点 7. ( 1 ) x &gt; 0 时 , f ( x ) = lim ⁡ n → ∞ ∑ i = 0 n − 1 cos ⁡ i n x ⋅ 1 n = lim ⁡ n → ∞ ∑ i = 0 n − 1 cos ⁡ x n i ⋅ x n ⋅ 1 x = 1 x ∫ 0 x cos ⁡ t d t = sin ⁡ x x &ThickSpace; ⟹ &ThickSpace; f ( x ) = { sin ⁡ x x , x &gt; 0 1 , x = 0 sin ⁡ x , x &lt; 0 8. f ′ ( − 1 x ) = x [ f ′ ( x ) + 1 ] &ThickSpace; ⟹ &ThickSpace; f ′ ( x ) = − x [ f ′ ( x ) + 1 ] 代 入 , 得 f ′ ( x ) = − x [ x [ f ′ ( x ) + 1 ] + 1 ] &ThickSpace; ⟹ &ThickSpace; f ′ ( x ) = − x 2 − x 1 + x 2 由 f ′ ( x ) = 0 , 知 x 1 = 0 , x 2 = − 1 ∴ x 1 = 0 是 极 大 值 点 , x 2 = − 1 是 极 小 值 点 9. a e x = 1 + x , 令 f ( x ) = a e x − 1 − x &ThickSpace; ⟹ &ThickSpace; a = 1 + x e x , 令 f ( x ) = 1 + x e x , f ′ ( x ) = e x − ( 1 + x ) e x ( e x ) 2 = − x e x &ThickSpace; ⟹ &ThickSpace; x &lt; 0 时 , f ( x ) 单 调 递 增 , x &gt; 0 时 , f ( x ) 单 调 递 减 , 由 f ( − ∞ ) = lim ⁡ n → ∞ 1 + x e x = − ∞ f ( 0 ) = 1 , 且 f ( + ∞ ) = lim ⁡ x → + ∞ 1 + x e x = 0 { a ≥ 0 , 1 0 &lt; a &lt; 1 , 2 a = 1 , 1 a &gt; 1 , n a n 10. f ( x 1 ) = f ( x 2 ) = 0 ( x 1 &lt; x 2 ) &ThickSpace; ⟹ &ThickSpace; f ( ξ ) + f ′ ( ξ ) = 0 ( x 1 &lt; ξ &lt; x 2 ) F ( x ) = e x f ( x ) , 则 F ( x 1 ) = 0 = F ( x 2 ) &ThickSpace; ⟹ &ThickSpace; ∃ ξ ∈ ( x 1 , x 2 ) , 使 F ′ ( ξ ) = e x f ( x ) + e x f ′ ( x ) ∣ ξ = 0 即 f ( ξ ) + f ′ ( ξ ) = 0 11. ( 1 ) 令 f ( x ) = ( 1 + x ) ln ⁡ 2 ( 1 + x ) − x 2 , 0 &lt; x &lt; 1 , ∴ f ′ ( x ) = ln ⁡ ( 1 + x ) + 2 ln ⁡ ( 1 + x ) − 2 x , 0 &lt; x &lt; 1 且 f ′ ′ ( x ) = 2 ln ⁡ ( 1 + x ) 1 + x + 2 1 + x − 2 = 2 [ ln ⁡ ( 1 + x ) − x ] 1 + x &lt; 0 &ThickSpace; ⟹ &ThickSpace; f ′ ( x ) 单 调 递 减 且 f ′ ( 0 ) = 0 , 故 f ′ ( x ) &lt; 0 , 0 &lt; x &lt; 1 &ThickSpace; ⟹ &ThickSpace; f ( x ) 单 调 递 减 且 f ( 0 ) = 0 , 故 f ( x ) &lt; 0 , 0 &lt; x &lt; 1 ( 2 ) 令 g ( x ) = 1 ln ⁡ ( 1 + x ) − 1 x , 0 &lt; x &lt; 1 &ThickSpace; ⟹ &ThickSpace; g ′ ( x ) = − 1 1 + x ln ⁡ 2 ( 1 + x ) + 1 x 2 = ( 1 + x ) ln ⁡ 2 ( 1 + x ) − x 2 x 2 ( 1 + x ) ln ⁡ 2 ( 1 + x ) 由 ( 1 ) 可 知 , g ′ ( x ) &lt; 0 , 故 g ( x ) 单 调 递 减 , g ( 1 ) = 1 ln ⁡ 2 − 1 最 小 g ( 0 ) = lim ⁡ x → 0 ( 1 ln ⁡ ( 1 + x ) − 1 x ) = lim ⁡ x → 0 x − ln ⁡ ( 1 + x ) x ln ⁡ ( 1 + x ) = 1 2 最 大 即 1 ln ⁡ 2 − 1 &lt; 1 ln ⁡ ( 1 + X ) − 1 x &lt; 1 2 12. ( 1 ) ln ⁡ f ( x 1 ) + ln ⁡ f ( x 2 ) ≥ 2 ln ⁡ f ( x 1 + x 2 2 ) &ThickSpace; ⟹ &ThickSpace; ln ⁡ f ( x 1 ) + ln ⁡ f ( x 2 ) 2 ≥ ln ⁡ f ( x 1 + x 2 2 ) 令 g ( x ) = ln ⁡ f ( x ) , g ′ ( x ) = f ′ ( x ) f ( x ) &ThickSpace; ⟹ &ThickSpace; g ′ ′ ( x ) = f ′ ′ ( x ) f ( x ) − f ′ ( x ) f ′ ( x ) f 2 ( x ) ≥ 0 故 g ( x ) 是 凹 曲 线 , 于 是 g ( x 1 ) + g ( x 2 ) 2 ≥ g ( x 1 + x 2 2 ) 即 ln ⁡ f ( x ) + ln ⁡ f ( x 2 ) 2 ≥ ln ⁡ f ( x 1 + x 2 2 ) ( 2 ) 由 ( 1 ) 得 g ( x ) = ln ⁡ f ( x ) 是 凹 曲 线 y − g ( 0 ) = g ′ ( 0 ) ( x − 0 ) 即 y = f ′ ( 0 ) x &ThickSpace; ⟹ &ThickSpace; g ( x ) ≥ y 即 ln ⁡ f ( x ) ≥ f ′ ( 0 ) x &ThickSpace; ⟹ &ThickSpace; f ( x ) ≥ e f ′ ( 0 ) x \begin{aligned} 1.&amp;2-y&#x27;=\frac2{1+(y-x)^2}(y&#x27;-1)\implies k=y&#x27;|_p=\frac32\\ &amp;\implies y-(2+\frac{\pi}2)=\frac32(x-(1+\frac\pi2))\\ 2.&amp;由xy+e^{x+y}=1,知y+xy&#x27;+e^{x+y}(1+y&#x27;)=0\\ &amp;\implies y&#x27;(0)=-1=k,\therefore y-0=-x\\ &amp;\implies I=\lim_{n\to\infty}\frac{f(\frac2n)}{\frac1n}=\lim_{n\to\infty}\frac{f(0+\frac2n)-f(0)}{\frac2n}\cdot2=2f&#x27;(0)=-2\\ 3.&amp;f&#x27;(x)=nx^{n-1}\implies k=n,故y-1=n(x-1)\implies x_n=1-\frac1n\\ &amp;故I=\lim_{n\to\infty}f(x_n)=\lim_{n\to\infty}(1-\frac1n)^n=e^A=e^{-1}\\ &amp;其中A=\lim_{n\to\infty}n(1-\frac1n-1)=-1\\ 4.&amp;交点(1,1),y_1&#x27;(1)=(-\frac1{x^2})|_{x=1}=-1=\tan\alpha\\ &amp;y_2&#x27;(1)=(\frac1{2\sqrt x})|_{x=1}=\frac12=\tan\beta\\ &amp;\implies r=\alpha-\beta=\frac34\pi-\arctan\frac12\\ 5.&amp;f(x)=\begin{cases}-xe^{x-1},x&lt;0\\0,x=0\\xe^{x-1},0&lt;x&lt;1\\ 1,x=1\\xe^{1-x},x&gt;1\end{cases}\qquad f&#x27;(x)=\begin{cases}-e^{x-1}-xe^{x-1},x&lt;0\\e^{x-1}+xe^{x-1},0&lt;x&lt;1\\ e^{1-x}-xe^{1_x},x&gt;1\end{cases}\\ &amp;f&#x27;_(0)=-e^{-1},f&#x27;_+(0)=e^{-1},\therefore f&#x27;(0)不存在\\ &amp;f&#x27;_(1)=2,f&#x27;_+(1)=0,\therefore f&#x27;(1)不存在\\ &amp;知x_1=-1,x_2=0,x_3=1,则x_1=-1为极大点,x_2=0为极小点,x_3=1为极大点\\ 6.&amp;F(x)=\int_1^x(\frac2x+\ln x)f(t)dt-\int_1^x(\frac2t+\ln t)f(t)dt\\ &amp;=(\frac2x+\ln x)\int_1^xf(t)dt-\int_1^x(\frac2t+\ln t)f(t)dt\\ &amp; \implies F&#x27;(x)=(-\frac2{x^2}+\frac1x)\int_1^xf(t)dt+(\frac2x+\ln x)F(x)-(\frac2x+\ln x)f(x)\\ &amp;由F&#x27;(x)=0知x=2是唯一极小值点,\therefore x=2是最小值点\\ 7.(1)&amp;x&gt;0时,f(x)=\lim_{n\to\infty}\sum_{i=0}^{n-1}\cos\frac inx\cdot\frac1n=\lim_{n\to\infty}\sum_{i=0}^{n-1}\cos\frac xni\cdot\frac xn\cdot\frac1x\\ &amp;=\frac1x\int_0^x\cos tdt=\frac{\sin x}{x}\implies f(x)=\begin{cases}\frac{\sin x}{x},x&gt;0\\1,x=0\\ \frac{\sin x},x&lt;0\end{cases}\\ 8.&amp;f&#x27;(-1x)=x[f&#x27;(x)+1]\implies f&#x27;(x)=-x[f&#x27;(x)+1]\\ &amp;代入,得f&#x27;(x)=-x[x[f&#x27;(x)+1]+1]\implies f&#x27;(x)=\frac{-x^2-x}{1+x^2}\\ &amp;由f&#x27;(x)=0,知x_1=0,x_2=-1\\ &amp;\therefore x_1=0是极大值点,x_2=-1是极小值点\\ 9.&amp;ae^x=1+x,令f(x)=ae^x-1-x\\ &amp;\implies a=\frac{1+x}{e^x},令f(x)=\frac{1+x}{e^x},f&#x27;(x)=\frac{e^x-(1+x)e^x}{(e^x)^2}=\frac{-x}{e^x}\\ &amp;\implies x&lt;0时,f(x)单调递增,x&gt;0时,f(x)单调递减,由f(-\infty)=\lim_{n\to\infty}\frac{1+x}{e^x}=-\infty\\ &amp;f(0)=1,且f(+\infty)=\lim_{x\to+\infty}\frac{1+x}{e^x}=0\\ &amp;\begin{cases}a\geq0,1\\0&lt;a&lt;1,2 \\a=1,1\\a&gt;1,nan\end{cases}\\ 10.&amp;f(x_1)=f(x_2)=0(x_1&lt;x_2)\\ &amp;\implies f(\xi)+f&#x27;(\xi)=0(x_1&lt;\xi&lt;x_2)\\ &amp;F(x)=e^xf(x),则F(x_1)=0=F(x_2)\implies\exists\xi\in(x_1,x_2),使F&#x27;(\xi)=e^xf(x)+e^xf&#x27;(x)|_{\xi}=0\\ &amp;即f(\xi)+f&#x27;(\xi)=0\\ 11.(1)&amp;令f(x)=(1+x)\ln^2(1+x)-x^2,0&lt;x&lt;1,\therefore f&#x27;(x)=\ln^(1+x)+2\ln(1+x)-2x,0&lt;x&lt;1\\ &amp;且f&#x27;&#x27;(x)=\frac{2\ln(1+x)}{1+x}+\frac2{1+x}-2=\frac{2[\ln(1+x)-x]}{1+x}&lt;0\\ &amp;\implies f&#x27;(x)单调递减且f&#x27;(0)=0,故f&#x27;(x)&lt;0,0&lt;x&lt;1\\ &amp;\implies f(x)单调递减且f(0)=0,故f(x)&lt;0,0&lt;x&lt;1\\ (2)&amp;令g(x)=\frac1{\ln(1+x)}-\frac1x,0&lt;x&lt;1 \implies g&#x27;(x)=\frac{-\frac1{1+x}}{\ln^2(1+x)}+\frac1{x^2}=\frac{(1+x)\ln^2(1+x)-x^2}{x^2(1+x)\ln^2(1+x)}\\ &amp;由(1)可知,g&#x27;(x)&lt;0,故g(x)单调递减,g(1)=\frac1{\ln2}-1最小\\ &amp;g(0)=\lim_{x\to0}(\frac1{\ln(1+x)}-\frac1x)=\lim_{x\to0}\frac{x-\ln(1+x)}{x\ln(1+x)}=\frac12最大\\ &amp;即\frac1{\ln2}-1&lt;\frac1{\ln(1+X)}-\frac1x&lt;\frac12\\ 12.(1)&amp;\ln f(x_1)+\ln f(x_2)\geq2\ln f(\frac{x_1+x_2}2)\implies\frac{\ln f(x_1)+\ln f(x_2)}{2}\geq\ln f(\frac{x_1+x_2}2)\\ &amp;令g(x)=\ln f(x),g&#x27;(x)=\frac{f&#x27;(x)}{f(x)}\implies g&#x27;&#x27;(x)=\frac{f&#x27;&#x27;(x)f(x)-f&#x27;(x)f&#x27;(x)}{f^2(x)}\geq0\\ &amp;故g(x)是凹曲线,于是\frac{g(x_1)+g(x_2)}2\geq g(\frac{x_1+x_2}2)\\ &amp;即\frac{\ln f(x)+\ln f(x_2)}{2}\geq\ln f(\frac{x_1+x_2}2)\\ (2)&amp;由(1)得g(x)=\ln f(x)是凹曲线\\ &amp;y-g(0)=g&#x27;(0)(x-0)即y=f&#x27;(0)x\\ &amp;\implies g(x)\geq y 即\ln f(x)\geq f&#x27;(0)x\implies f(x)\geq e^{f&#x27;(0)x}\\ \end{aligned} 1.2.3.4.5.6.7.(1)8.9.10.11.(1)(2)12.(1)(2)2y=1+(yx)22(y1)k=yp=23y(2+2π)=23(x(1+2π))xy+ex+y=1,y+xy+ex+y(1+y)=0y(0)=1=k,y0=xI=nlimn1f(n2)=nlimn2f(0+n2)f(0)2=2f(0)=2f(x)=nxn1k=n,y1=n(x1)xn=1n1I=nlimf(xn)=nlim(1n1)n=eA=e1A=nlimn(1n11)=1(1,1),y1(1)=(x21)x=1=1=tanαy2(1)=(2x 1)x=1=21=tanβr=αβ=43πarctan21f(x)=xex1,x<00,x=0xex1,0<x<11,x=1xe1x,x>1f(x)=ex1xex1,x<0ex1+xex1,0<x<1e1xxe1x,x>1f(0)=e1,f+(0)=e1,f(0)f(1)=2,f+(1)=0,f(1)x1=1,x2=0,x3=1,x1=1x2=0x3=1F(x)=1x(x2+lnx)f(t)dt1x(t2+lnt)f(t)dt=(x2+lnx)1xf(t)dt1x(t2+lnt)f(t)dtF(x)=(x22+x1)1xf(t)dt+(x2+lnx)F(x)(x2+lnx)f(x)F(x)=0x=2,x=2x>0,f(x)=nlimi=0n1cosnixn1=nlimi=0n1cosnxinxx1=x10xcostdt=xsinxf(x)=xsinx,x>01,x=0,sinxx<0f(1x)=x[f(x)+1]f(x)=x[f(x)+1],f(x)=x[x[f(x)+1]+1]f(x)=1+x2x2xf(x)=0,x1=0,x2=1x1=0x2=1aex=1+x,f(x)=aex1xa=ex1+x,f(x)=ex1+x,f(x)=(ex)2ex(1+x)ex=exxx<0,f(x)x>0,f(x)f()=nlimex1+x=f(0)=1,f(+)=x+limex1+x=0a0,10<a<1,2a=1,1a>1,nanf(x1)=f(x2)=0(x1<x2)f(ξ)+f(ξ)=0(x1<ξ<x2)F(x)=exf(x),F(x1)=0=F(x2)ξ(x1,x2),使F(ξ)=exf(x)+exf(x)ξ=0f(ξ)+f(ξ)=0f(x)=(1+x)ln2(1+x)x2,0<x<1,f(x)=ln(1+x)+2ln(1+x)2x,0<x<1f(x)=1+x2ln(1+x)+1+x22=1+x2[ln(1+x)x]<0f(x)f(0)=0,f(x)<0,0<x<1f(x)f(0)=0,f(x)<0,0<x<1g(x)=ln(1+x)1x1,0<x<1g(x)=ln2(1+x)1+x1+x21=x2(1+x)ln2(1+x)(1+x)ln2(1+x)x2(1)g(x)<0,g(x)g(1)=ln211g(0)=x0lim(ln(1+x)1x1)=x0limxln(1+x)xln(1+x)=21ln211<ln(1+X)1x1<21lnf(x1)+lnf(x2)2lnf(2x1+x2)2lnf(x1)+lnf(x2)lnf(2x1+x2)g(x)=lnf(x),g(x)=f(x)f(x)g(x)=f2(x)f(x)f(x)f(x)f(x)0g(x)线2g(x1)+g(x2)g(2x1+x2)2lnf(x)+lnf(x2)lnf(2x1+x2)(1)g(x)=lnf(x)线yg(0)=g(0)(x0)y=f(0)xg(x)ylnf(x)f(0)xf(x)ef(0)x

积分

一元积分比大小

题目

1. 设 F ( x ) = ∫ x x + 2 π e s i n t s i n t d t , 则 F ( x ) = ‾ 2. 设 I k = ∫ 0 k π e x 2 s i n x d x ( k = 1 , 2 , 3 ) , 则 有 : ( ) A . I 1 &lt; I 2 &lt; I 3 B . I 3 &lt; I 2 &lt; I 1 C . I 2 &lt; I 3 &lt; I 1 D . I 2 &lt; I 1 &lt; I 3 3. 设 常 数 a &gt; 0 , 积 分 I 1 = ∫ 0 2 π c o s x 1 + x α d x , I 2 = ∫ 0 π 2 s i n x 1 + x α d x , 则 ( ) A . I 1 &gt; I 2 B . I 1 &lt; I 2 C . I 1 = I 2 D . 大 小 与 α 有 关 4. 证 明 ∫ 0 1 x ⋅ s i n π 2 x 1 + x d x &gt; ∫ 0 1 x ⋅ c o s π 2 x 1 + x d x \begin{aligned} &amp;1.设F(x)=\int_x^{x+2\pi}e^{sint}sintdt,则F(x)=\underline{\qquad}\\ &amp;2.设I_k=\int_0^{k\pi}e^{x^2}sinxdx(k=1,2,3),则有:(\quad)\\ &amp;A.I_1&lt;I_2&lt;I_3\quad B.I_3&lt;I_2&lt;I_1\quad C.I_2&lt;I_3&lt;I_1\quad D.I_2&lt;I_1&lt;I_3\\ &amp;3.设常数a&gt;0,积分I_1=\int_0^{\frac2\pi}\frac{cosx}{1+x^\alpha}dx,I_2=\int_0^{\frac\pi2}\frac{sinx}{1+x^\alpha}dx,则(\quad)\\ &amp;A.I_1&gt;I_2\quad B.I_1&lt;I_2\quad C.I_1=I_2\quad D.大小与\alpha有关\\ &amp;4.证明\int_0^1\frac{x\cdot sin\frac\pi2x}{1+x}dx&gt;\int_0^1\frac{x\cdot cos\frac\pi2x}{1+x}dx \end{aligned} 1.F(x)=xx+2πesintsintdt,F(x)=2.Ik=0kπex2sinxdx(k=1,2,3),:()A.I1<I2<I3B.I3<I2<I1C.I2<I3<I1D.I2<I1<I33.a>0,I1=0π21+xαcosxdx,I2=02π1+xαsinxdx,()A.I1>I2B.I1<I2C.I1=I2D.α4.011+xxsin2πxdx>011+xxcos2πxdx

答案

1. F ′ ( x ) = e sin ⁡ ( x + 2 π ) sin ⁡ ( x + 2 π ) − e sin ⁡ x sin ⁡ x = 0 &ThickSpace; ⟹ &ThickSpace; F ( x ) = c = F ( 0 ) = ∫ 0 2 π e sin ⁡ t sin ⁡ t d t &gt; 0 故 F ( x ) 为 正 常 数 2. I 1 = ∫ 0 π e x 2 sin ⁡ x d x , I 2 = ∫ 0 2 π e x 2 sin ⁡ x d x , I 3 = ∫ 0 3 π e x 2 sin ⁡ x d x 画 图 知 该 函 数 随 着 横 坐 标 x 的 增 大 , 其 因 式 e x 2 也 会 增 大 , 故 其 凹 或 凸 的 区 间 会 增 大 I 1 &gt; 0 , I 2 &lt; 0 , I 3 &gt; I 1 &gt; 0 3. I 1 − I 2 = ∫ 0 π 2 1 1 + x α ( cos ⁡ x − sin ⁡ x ) d x = ∫ 0 π 4 1 1 + x α ( cos ⁡ x − sin ⁡ x ) d x + ∫ π 4 π 2 1 1 + x α ( cos ⁡ x − sin ⁡ x ) d x &gt; 0 ( 前 者 大 , 后 者 小 ) 4. I 左 − I 右 = ∫ 0 1 x 1 + x ( sin ⁡ π 2 x − cos ⁡ π 2 x ) d x = ∫ 0 1 2 ( sin ⁡ π 2 x − cos ⁡ π 2 x ) d x + ∫ 1 2 1 x 1 + x ( sin ⁡ π 2 x − cos ⁡ π 2 x ) d x &gt; 0 \begin{aligned} 1.&amp;F&#x27;(x)=e^{\sin(x+2\pi)}\sin(x+2\pi)-e^{\sin x}\sin x=0\\ &amp;\implies F(x)=c=F(0)=\int_0^{2\pi}e^{\sin t}\sin tdt&gt;0\\ &amp;故F(x)为正常数\\ 2.&amp;I_1=\int_0^\pi e^{x^2}\sin xdx,I_2=\int_0^{2\pi}e^{x^2}\sin xdx,I_3=\int_0^{3\pi}e^{x^2}\sin xdx\\ &amp;画图知该函数随着横坐标x的增大,其因式e^{x^2}也会增大,故其凹或凸的区间会增大\\ &amp;I_1&gt;0,I_2&lt;0,I_3&gt;I_1&gt;0\\ 3.&amp;I_1-I_2=\int_0^{\frac\pi2}\frac1{1+x^\alpha}(\cos x-\sin x)dx\\ &amp;=\int_0^{\frac\pi4}\frac1{1+x^\alpha}(\cos x-\sin x)dx+\int_\frac\pi4^\frac\pi2\frac1{1+x^\alpha}(\cos x-\sin x)dx&gt;0(前者大,后者小)\\ 4.&amp;I_左-I_右=\int_0^1\frac{x}{1+x}(\sin\frac\pi2x-\cos\frac\pi2x)dx\\ &amp;=\int_0^{\frac12}(\sin\frac\pi2x-\cos\frac\pi2x)dx+\int_\frac12^1\frac x{1+x}(\sin\frac\pi2x-\cos\frac\pi2x)dx&gt;0\\ \end{aligned} 1.2.3.4.F(x)=esin(x+2π)sin(x+2π)esinxsinx=0F(x)=c=F(0)=02πesintsintdt>0F(x)I1=0πex2sinxdx,I2=02πex2sinxdx,I3=03πex2sinxdxxex2I1>0,I2<0,I3>I1>0I1I2=02π1+xα1(cosxsinx)dx=04π1+xα1(cosxsinx)dx+4π2π1+xα1(cosxsinx)dx>0()II=011+xx(sin2πxcos2πx)dx=021(sin2πxcos2πx)dx+2111+xx(sin2πxcos2πx)dx>0

定积分定义

部分题在36讲配套视频中出现过,故请至相关笔记页面查看。
数列极限

题目

1. lim ⁡ n → ∞ ( n + 1 ) ( n + 2 ) ⋯ ( n + n ) n n = ‾ 2. f ( x ) = { e − x , x ≠ 0 lim ⁡ n → ∞ 2 [ n ( n + 1 ) 2 + n ( n + 2 ) 2 + ⋯ + n ( n + n ) 2 ] , x = 0 , 求 f ′ ( 0 ) 3. ( 1 ) 证 明 : 当 x → 0 + 时 , 不 等 式 0 &lt; tan ⁡ x − x x &lt; x 4 成 立 。 ( 2 ) 设 x n = ∑ k = 1 n tan ⁡ 2 1 n + k , 求 lim ⁡ n → ∞ x n \begin{aligned} &amp;1.\lim_{n\to\infty}\frac{\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}{n}=\underline{\qquad}\\ &amp;2.f(x)=\begin{cases}e^{-x},x\neq0\\ \lim_{n\to\infty}2[\frac n{(n+1)^2}+\frac n{(n+2)^2}+\cdots+\frac n{(n+n)^2}],x=0\end{cases},求f&#x27;(0)\\ &amp;3.(1)证明:当x\to0^+时,不等式0&lt;\tan^x-x^x&lt; x^4成立。(2)设x_n=\sum^n_{k=1}\tan^2\frac1{\sqrt{n+k}},求\lim_{n\to\infty}x_n \end{aligned} 1.nlimnn(n+1)(n+2)(n+n) =2.f(x)={ex,x̸=0limn2[(n+1)2n+(n+2)2n++(n+n)2n],x=0,f(0)3.(1):x0+0<tanxxx<x4(2)xn=k=1ntan2n+k 1,nlimxn

答案

1. I = lim ⁡ n → ∞ ( 1 + 1 n ) ( 1 + 2 n ) ⋯ ( 1 + n n ) n = e ln ⁡ ( 1 + 1 n ) ( 1 + 2 n ) ⋯ ( 1 + n n ) n = e 1 n ∑ i = 1 n ln ⁡ ( 1 + i n ) = e ∫ 0 1 ln ⁡ ( 1 + x ) d x = e 2 ln ⁡ 2 − 1 = 4 e 2. x = 0 时 , f ( x ) = lim ⁡ n → ∞ 2 ∑ i = 1 n n ( n + i ) 2 = 2 lim ⁡ n → ∞ ∑ i = 1 n 1 ( 1 + i n ) 2 ⋅ 1 n = 2 ∫ 0 1 1 ( 1 + x ) 2 d x = 2 ( − 1 1 + x ) ∣ 0 ′ = 2 ( − 2 x + 1 ) = 1 f ( x ) = { e − x , x ≠ 0 1 , x = 0 , f ′ ( 0 ) = lim ⁡ x → 0 f ( x ) − f ( 0 ) x = lim ⁡ x → 0 e − x − 1 x = − 1 3. ( 1 ) lim ⁡ x → 0 + tan ⁡ 2 x − x 2 x 4 = 2 3 &lt; 1 &ThickSpace; ⟹ &ThickSpace; x → 0 + 时 , 0 &lt; tan ⁡ 2 x − x 2 &lt; x 4 ( 2 ) 由 ( 1 ) 知 x 2 &lt; tan ⁡ 2 x &lt; x 2 + x 4 &ThickSpace; ⟹ &ThickSpace; ∑ k = 1 n 1 n + k &lt; ∑ k = 1 n tan ⁡ 2 1 n + k &lt; ∑ k = 1 n 1 n + k + ∑ k = 1 n 1 ( n + k ) 2 由 lim ⁡ n → ∞ ∑ k = 1 n 1 n + k = lim ⁡ n → ∞ 1 n ⋅ 1 1 + k n = ∫ + 0 1 1 1 + x d x 且 lim ⁡ n → ∞ ∑ k = 1 n 1 ( n + k ) 2 &lt; lim ⁡ n → ∞ ∑ k = 1 n 1 n 2 = 1 n ∴ lim ⁡ n → ∞ x n = 0 \begin{aligned} 1.I&amp;=\lim_{n\to\infty}\sqrt[n]{(1+\frac1n)(1+\frac2n)\cdots(1+\frac nn)}\\ &amp;=e^{\ln\sqrt[n]{(1+\frac1n)(1+\frac2n)\cdots(1+\frac nn)}}\\ &amp;=e^{\frac1n\sum_{i=1}^n}\ln(1+\frac in)\\ &amp;=e^{\int_0^1\ln(1+x)dx}=e^{2\ln2-1}=\frac4e\\ 2.&amp;x=0时,f(x)=\lim_{n\to\infty}2\sum_{i=1}^n\frac{n}{(n+i)^2}=2\lim_{n\to\infty}\sum_{i=1}^n\frac1{(1+\frac{i}{n})^2}\cdot\frac1n\\ &amp;=2\int_0^1\frac1{(1+x)^2}dx=2(-\frac1{1+x})|_0&#x27;=2(-\frac2x+1)=1\\ &amp;f(x)=\begin{cases}e^{-x},x\neq0\\1,x=0\end{cases},f&#x27;(0)=\lim_{x\to0}\frac{f(x)-f(0)}x=\lim_{x\to0}\frac{e^{-x}-1}x=-1\\ 3.(1)&amp;\lim_{x\to0^+}\frac{\tan^2x-x^2}{x^4}=\frac23&lt;1\implies x\to0^+时,0&lt;\tan^2x-x^2&lt;x^4\\ (2)&amp;由(1)知x^2&lt;\tan^2x&lt;x^2+x^4\\ &amp;\implies\sum_{k=1}^n\frac1{n+k}&lt;\sum_{k=1}^n\tan^2\frac1{\sqrt{n+k}}&lt;\sum_{k=1}^n\frac1{n+k}+\sum_{k=1}^n\frac1{(n+k)^2}\\ &amp;由\lim_{n\to\infty}\sum_{k=1}^n\frac1{n+k}=\lim_{n\to\infty}\frac1n\cdot\frac1{1+\frac kn}=\int+0^1\frac1{1+x}dx\\ &amp;且\lim_{n\to\infty}\sum_{k=1}^n\frac1{(n+k)^2}&lt;\lim_{n\to\infty}\sum_{k=1}^n\frac1{n^2}=\frac1n\\ &amp;\therefore \lim_{n\to\infty}x_n=0 \end{aligned} 1.I2.3.(1)(2)=nlimn(1+n1)(1+n2)(1+nn) =elnn(1+n1)(1+n2)(1+nn) =en1i=1nln(1+ni)=e01ln(1+x)dx=e2ln21=e4x=0f(x)=nlim2i=1n(n+i)2n=2nlimi=1n(1+ni)21n1=201(1+x)21dx=2(1+x1)0=2(x2+1)=1f(x)={ex,x̸=01,x=0,f(0)=x0limxf(x)f(0)=x0limxex1=1x0+limx4tan2xx2=32<1x0+0<tan2xx2<x4(1)x2<tan2x<x2+x4k=1nn+k1<k=1ntan2n+k 1<k=1nn+k1+k=1n(n+k)21nlimk=1nn+k1=nlimn11+nk1=+011+x1dxnlimk=1n(n+k)21<nlimk=1nn21=n1nlimxn=0

变现积分(导数)

直接求导
题目

1. 设 f ( x ) 为 连 续 函 数 , 且 F ( x ) = ∫ 1 x ln ⁡ x f ( t ) d t , 则 F ( x ) = 2. lim ⁡ x → 0 ∫ 0 x s i n 2 t 4 + t 2 ∫ 0 x ( t + 1 − 1 ) d t d t 3. lim ⁡ x → 0 ∫ 0 x [ ∫ 0 u 2 arctan ⁡ ( 1 + t ) d t ] d u x ( 1 − cos ⁡ x ) \begin{aligned} &amp;1.设f(x)为连续函数,且F(x)=\int_{\frac1x}^{\ln x}f(t)dt,则F(x)=\\ &amp;2.\lim_{x\to0}\int_0^x\frac{sin2t}{\sqrt{4+t^2}\int_0^x(\sqrt{t+1}-1)dt}dt\\ &amp;3.\lim_{x\to0}\frac{\int_0^x[\int_0^{{u}^2}\arctan(1+t)dt]du}{x(1-\cos x)} \end{aligned} 1.f(x)F(x)=x1lnxf(t)dt,F(x)=2.x0lim0x4+t2 0x(t+1 1)dtsin2tdt3.x0limx(1cosx)0x[0u2arctan(1+t)dt]du

答案

1. F ′ ( x ) = f ( ln ⁡ x ) ⋅ 1 x − f ( 1 x ) ( − 1 x 2 ) 2. I = lim ⁡ x → 0 ∫ 0 x sin ⁡ 2 t 4 + t 2 d t ∫ 0 x ( t + 1 − 1 ) d t = lim ⁡ x → 0 sin ⁡ 2 x 4 + x 2 x + 1 − 1 = 1 2 lim ⁡ x → 0 sin ⁡ 2 x 1 + x − 1 = 2 3. 令 φ ( u ) = ∫ 0 u 2 arctan ⁡ ( 1 + t ) d t 则 I = lim ⁡ x → 0 ∫ 0 x φ ( u ) d u x ⋅ 1 2 x 2 = lim ⁡ x → 0 φ ( x ) 3 2 x 2 lim ⁡ x → 0 ∫ 0 x 2 arctan ⁡ ( 1 + t ) d t 3 2 x 2 lim ⁡ x → 0 arctan ⁡ ( 1 + x 2 ) ⋅ 2 x 3 x = π 6 \begin{aligned} 1.&amp;F&#x27;(x)=f(\ln x)\cdot\frac1x-f(\frac1x)(\frac{-1}{x^2})\\ 2.&amp;I=\lim_{x\to0}\frac{\int_0^x\frac{\sin2t}{\sqrt{4+t^2}}dt}{\int_0^x(\sqrt{t+1}-1)dt}=\lim_{x\to0}\frac{\frac{\sin2x}{\sqrt{4+x^2}}}{\sqrt{x+1}-1}\\ &amp;=\frac12\lim_{x\to0}\frac{\sin2x}{\sqrt{1+x}-1}=2\\ 3.&amp;令\varphi(u)=\int_0^{u^2}\arctan(1+t)dt\\ &amp;则I=\lim_{x\to0}\frac{\int_0^x\varphi(u)du}{x\cdot\frac12x^2}=\lim_{x\to0}\frac{\varphi(x)}{\frac32x^2}\\ &amp;\lim_{x\to0}\frac{\int_0^{x^2}\arctan(1+t)dt}{\frac32x^2}\\ &amp;\lim_{x\to0}\frac{\arctan(1+x^2)\cdot2x}{3x}=\frac\pi6 \end{aligned} 1.2.3.F(x)=f(lnx)x1f(x1)(x21)I=x0lim0x(t+1 1)dt0x4+t2 sin2tdt=x0limx+1 14+x2 sin2x=21x0lim1+x 1sin2x=2φ(u)=0u2arctan(1+t)dtI=x0limx21x20xφ(u)du=x0lim23x2φ(x)x0lim23x20x2arctan(1+t)dtx0lim3xarctan(1+x2)2x=6π

拆分后再求导
题目

设 φ ( x ) 在 [ a , b ] 上 连 续 , 且 φ ( x ) &gt; 0 , 则 函 数 y = ∫ a b ∣ x − t ∣ φ ( t ) d t , 则 ( ) A . 在 ( a , b ) 内 为 凸 B . 在 ( a , b ) 内 为 凹 C . 在 ( a , b ) 内 有 拐 点 D . 在 ( a , b ) 内 有 间 断 点 设\varphi(x)在[a,b]上连续,且\varphi(x)&gt;0,则函数y=\int_a^b|x-t|\varphi(t)dt,则()\\ A.在(a,b)内为凸\quad B.在(a,b)内为凹 \quad C.在(a,b)内有拐点\quad D.在(a,b)内有间断点\\ φ(x)[a,b]φ(x)>0,y=abxtφ(t)dt,()A.(a,b)B.(a,b)C.(a,b)D.(a,b)

答案

y = ∫ a b ∣ x − t ∣ φ ( t ) d t = ∫ a x ( x − t ) φ ( t ) d t + ∫ x b ( t − x ) φ ( t ) d t = ∫ a x x φ ( t ) d t − ∫ a x t ⋅ φ ( t ) d t + ∫ x b t φ ( t ) d t − ∫ x b x φ ( t ) d t = x ∫ a x φ ( t ) d t − ∫ a x t φ ( t ) d t + ∫ x b t φ ( t ) d t − x ∫ x b φ ( t ) d t &ThickSpace; ⟹ &ThickSpace; y ′ = ∫ a x φ ( t ) d t + x φ ( x ) − x φ ( x ) − x φ ( x ) − ∫ x b φ ( t ) d t + x φ ( x ) = ∫ a x φ ( t ) d t − ∫ x b φ ( t ) d t &ThickSpace; ⟹ &ThickSpace; y ′ ′ = φ ( x ) + φ ( x ) = 2 φ ( 2 ) &gt; 0 \begin{aligned} y&amp;=\int_a^b|x-t|\varphi(t)dt\\ &amp;=\int_a^x(x-t)\varphi(t)dt+\int_x^b(t-x)\varphi(t)dt\\ &amp;=\int_a^xx\varphi(t)dt-\int_a^xt\cdot\varphi(t)dt+\int_x^bt\varphi(t)dt-\int_x^bx\varphi(t)dt\\ &amp;=x\int_a^x\varphi(t)dt-\int_a^xt\varphi(t)dt+\int_x^bt\varphi(t)dt-x\int_x^b\varphi(t)dt\\ &amp;\implies y&#x27;=\int_a^x\varphi(t)dt+x\varphi(x)-x\varphi(x)-x\varphi(x)-\int_x^b\varphi(t)dt+x\varphi(x)\\ &amp;=\int_a^x\varphi(t)dt-\int_x^b\varphi(t)dt\implies y&#x27;&#x27;=\varphi(x)+\varphi(x)=2\varphi(2)&gt;0 \end{aligned} y=abxtφ(t)dt=ax(xt)φ(t)dt+xb(tx)φ(t)dt=axxφ(t)dtaxtφ(t)dt+xbtφ(t)dtxbxφ(t)dt=xaxφ(t)dtaxtφ(t)dt+xbtφ(t)dtxxbφ(t)dty=axφ(t)dt+xφ(x)xφ(x)xφ(x)xbφ(t)dt+xφ(x)=axφ(t)dtxbφ(t)dty=φ(x)+φ(x)=2φ(2)>0

换元后再求导
题目

设 f ( x ) 在 [ 0 , + ∞ ) 上 可 导 , f ( 0 ) = 0 , 其 反 函 数 为 g ( x ) , 若 ∫ x x + f ( x ) g ( t − x ) d t = x 2 ln ⁡ ( 1 + x ) , 求 f ( x ) 设f(x)在[0,+\infty)上可导,f(0)=0,其反函数为g(x),若\int_x^{x+f(x)}g(t-x)dt=x^2\ln(1+x),求f(x) f(x)[0,+)f(0)=0,g(x),xx+f(x)g(tx)dt=x2ln(1+x),f(x)

答案

∫ x x + f ( x ) g ( t − x ) d t 令 u = t − x → ∫ 0 f ( x ) g ( u ) d u &ThickSpace; ⟹ &ThickSpace; ∫ 0 f ( x ) g ( u ) d u = x 2 ln ⁡ ( 1 + x ) &ThickSpace; ⟹ &ThickSpace; g ( f ( x ) ) ⋅ f ′ ( x ) = 2 x ln ⁡ ( 1 + x ) + x 2 1 + x &ThickSpace; ⟹ &ThickSpace; x ⋅ f ′ ( x ) = 2 x ln ⁡ ( 1 + x ) + x 2 1 + x &ThickSpace; ⟹ &ThickSpace; f ′ ( x ) = 2 ln ⁡ ( 1 + x ) + x 1 + x &ThickSpace; ⟹ &ThickSpace; f ( x ) = 2 ∫ ln ⁡ ( 1 + x ) d x + ∫ x 1 + x d x = 2 ( x + 1 ) ln ⁡ ( 1 + x ) − 2 ∫ ( x + 1 ) ⋅ 1 1 + x d x = 2 ( x + 1 ) ln ⁡ ( 1 + x ) − 2 x + x − ln ⁡ ( 1 + x ) + c 又 f ( 0 ) = 0 , 故 c = 0 则 f ( x ) = ( 2 x + 1 ) ln ⁡ ( 1 + x ) − x \begin{aligned} &amp;\int_x^{x+f(x)}g(t-x)dt\underrightarrow{令u=t-x}\int_0^{f(x)}g(u)du\\ &amp;\implies \int_0^{f(x)}g(u)du=x^2\ln(1+x)\implies g(f(x))\cdot f&#x27;(x)=2x\ln(1+x)+\frac{x^2}{1+x}\\ &amp;\implies x\cdot f&#x27;(x)=2x\ln(1+x)+\frac{x^2}{1+x}\\ &amp;\implies f&#x27;(x)=2\ln(1+x)+\frac{x}{1+x}\\ &amp;\implies f(x)=2\int\ln(1+x)dx+\int\frac{x}{1+x}dx\\ &amp;=2(x+1)\ln(1+x)-2\int(x+1)\cdot\frac1{1+x}dx\\ &amp;=2(x+1)\ln(1+x)-2x+x-\ln(1+x)+c\\ &amp;又f(0)=0,故c=0\\ &amp;则f(x)=(2x+1)\ln(1+x)-x \end{aligned} xx+f(x)g(tx)dt u=tx0f(x)g(u)du0f(x)g(u)du=x2ln(1+x)g(f(x))f(x)=2xln(1+x)+1+xx2xf(x)=2xln(1+x)+1+xx2f(x)=2ln(1+x)+1+xxf(x)=2ln(1+x)dx+1+xxdx=2(x+1)ln(1+x)2(x+1)1+x1dx=2(x+1)ln(1+x)2x+xln(1+x)+cf(0)=0,c=0f(x)=(2x+1)ln(1+x)x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值