题目大意:
给定N个学生,k排,每排分别有N1,N2,N3……Nk
合影时要求每一排从左到右身高递减,每一列从后到前身高也递减,问一共有多少种安排合影位置的方案
方法一:动态规划
f[a1,a2,a3,a4,a5]表示每排从左起占了a1,a2,a3,a4,a5个人的方案数,f[0,0,0,0,0]=1。
转移方程为:当a1<N1,f[a1+1,a2,a3,a4,a5]+=f[a1,a2,a3,a4,a5],其余同理。
方法二:杨氏定理+勾子定理
https://blog.youkuaiyun.com/flymoyu/article/details/98659780
代码:
#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#define rep(i,a,b) for(int i = a; i <= b; i++)
typedef long long ll;
using namespace std;
int row[10],n;
ll dp[32][32][32][32][32];
int main()
{
while(~scanf("%d",&n)){
if(!n) break;
memset(row,0,sizeof row);
rep(i,1,n) scanf("%d",&row[i]);
rep(a1,0,row[1])
rep(a2,0,row[2])
rep(a3,0,row[3])
rep(a4,0,row[4])
rep(a5,0,row[5]) dp[a1][a2][a3][a4][a5] = 0;
dp[0][0][0][0][0] = 1;
rep(a1,0,row[1])
rep(a2,0,row[2]){
if(a1 != row[1] && a2 > a1) continue;
rep(a3,0,row[3]){
if(a2 != row[2] && a3 > a2) continue;
rep(a4,0,row[4]){
if(a3 != row[3] && a4 > a3) continue;
rep(a5,0,row[5]){
if(a4 != row[4] && a5 > a4) continue;
if(a1 < row[1])
dp[a1+1][a2][a3][a4][a5] += dp[a1][a2][a3][a4][a5];
if(a2 < row[2] && ((a2 < a1) || (a1 == row[1])))
dp[a1][a2+1][a3][a4][a5] += dp[a1][a2][a3][a4][a5];
if(a3 < row[3] && ((a3 < a2) || (a2 == row[2])))
dp[a1][a2][a3+1][a4][a5] += dp[a1][a2][a3][a4][a5];
if(a4 < row[4] && ((a4 < a3) || (a3 == row[3])))
dp[a1][a2][a3][a4+1][a5] += dp[a1][a2][a3][a4][a5];
if(a5 < row[5] && ((a5 < a4) || (a4 == row[4])))
dp[a1][a2][a3][a4][a5+1] += dp[a1][a2][a3][a4][a5];
}
}
}
}
printf("%lld\n",dp[row[1]][row[2]][row[3]][row[4]][row[5]]);
}
return 0;
}