从零开始:H20服务器上DeepSeek R1 671B大模型部署与压力测试全攻略

前言

最近,我有幸在工作中接触到了DeepSeek R1 671B模型,这是目前中文开源领域参数量最大的高质量模型之一。DeepSeek团队在2024年推出的这款模型,以其惊人的6710亿参数量和出色的推理性能,引起了业界广泛关注。

作为一名AI基础设施工程师,我有机会在H20服务器上部署这个庞然大物,并对其进行了全面的压力测试。这篇文章将详细记录我的部署过程和性能测试方法,希望能为大家提供一些参考。

💡 为什么选择DeepSeek R1?

  • 超大规模参数量(671B)
  • 优秀的中英文理解能力
  • 开源可商用的许可证
  • 在多项基准测试中表现优异

那么,如何在自己的服务器上部署这个"巨无霸"模型呢?接下来,我将分享我的完整操作流程。

一、环境准备

1.1 硬件配置

在开始部署之前,先来看看我使用的硬件配置:

  • 服务器型号:H20
  • GPU:8×NVIDIA H20 (141GB)
  • CPU:双路Intel至强处理器
  • 内存:2TB
  • 存储:高速NVMe SSD

这套配置对于部署671B参数的模型来说是刚好够用的。根据我的经验,至少需要8张高端GPU才能满足推理需求。

1.2 环境检查

首先,确认系统资源是否满足需求:

# 检查CPU信息
lscpu

# 检查GPU信息
nvidia-smi

# 检查内存信息
dmidecode -t memory

# 检查磁盘空间
df -h

 这次试用的H20是141G显存的PCIE版本。8张GPU之间都是通过NV18(18条NVLink)互联,形成了全互联(fully connected)的网络拓扑,GPU0-3属于NUMA节点0 (CPU核心0-55,112-167),GPU4-7属于NUMA节点1 (CPU核心56-111,168-223),单卡总带宽:26.562 × 18 ≈ 478 GB/s

 

特别注意:部署DeepSeek R1 671B至少需要700GB的磁盘空间用于存储模型文件,请确保有足够空间。

1.3 软件环境配置

我选择使用Apptainer(原Singularity)作为容器运行环境,它比Docker更适合HPC场景,在多GPU协作方面表现更好。

# 安装Apptainer
sudo add-apt-repository -y ppa:apptainer/ppa
sudo apt update
sudo apt install -y apptainer

# 检查安装版本
apptainer --version

二、模型获取与存储

2.1 模型下载

DeepSeek R1 671B模型可以从官方渠道下载,但文件非常大。在我的案例中,模型已预先下载并存储在 /data0/DeepSeek-R1/ 目录下。

2.2 模型完整性验证

下载完成后,务必验证模型文件的完整性:

cd /data0/DeepSeek-R1
# 验证模型文件的MD5值
md5sum model-00001-of-00163.safetensors

⚠️ 注意:模型文件可能分为多个部分,一定要验证所有文件的完整性,避免因文件损坏导致的启动失败。

三、服务部署

对于超大规模模型,我测试了两种主流的部署方式:基于vLLM和基于SGLang的部署。

3.1 基于vLLM的部署

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值