快速排序

今天介绍快速排序,这也是在实际中最常用的一种排序算法,速度快,效率高。就像名字一样,快速排序是最优秀的一种排序算法。

思想

快速排序采用的思想是分治思想。

快速排序是找出一个元素(理论上可以随便找一个)作为基准(pivot),然后对数组进行分区操作,使基准左边元素的值都不大于基准值,基准右边的元素值 都不小于基准值,如此作为基准的元素调整到排序后的正确位置。递归快速排序,将其他n-1个元素也调整到排序后的正确位置。最后每个元素都是在排序后的正 确位置,排序完成。所以快速排序算法的核心算法是分区操作,即如何调整基准的位置以及调整返回基准的最终位置以便分治递归


int quicksort(vector<int> &v, int left, int right){
        if(left < right){
                int key = v[left];
                int low = left;
                int high = right;
                while(low < high){
                        while(low < high && v[high] > key){
                                high--;
                        }
                        v[low] = v[high];
                        while(low < high && v[low] < key){
                                low++;
                        }
                        v[high] = v[low];
                }
                v[low] = key;
                quicksort(v,left,low-1);
                quicksort(v,low+1,right);
        }
}



分析

快速排序的时间主要耗费在划分操作上,对长度为k的区间进行划分,共需k-1次关键字的比较。

最坏情况是每次划分选取的基准都是当前无序区中关键字最小(或最大)的记录,划分的结果是基准左边的子区间为空(或右边的子区间为空),而划分所得的另一个非空的子区间中记录数目,仅仅比划分前的无序区中记录个数减少一个。时间复杂度为O(n*n)

在最好情况下,每次划分所取的基准都是当前无序区的"中值"记录,划分的结果是基准的左、右两个无序子区间的长度大致相等。总的关键字比较次数:O(nlgn)

尽管快速排序的最坏时间为O(n2),但就平均性能而言,它是基于关键字比较的内部排序算法中速度最快者,快速排序亦因此而得名。它的平均时间复杂度为O(nlgn)。



  最 喜欢的还是大话树结构中的步步改进的策略,一步步优化,很欣喜又爽快 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值