Fibonacci Numbers

Fibonacci Numbers

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1967    Accepted Submission(s): 771


Problem Description
The Fibonacci sequence is the sequence of numbers such that every element is equal to the sum of the two previous elements, except for the first two elements f0 and f1 which are respectively zero and one.

What is the numerical value of the nth Fibonacci number?
 

Input
For each test case, a line will contain an integer i between 0 and 10 8 inclusively, for which you must compute the ith Fibonacci number fi. Fibonacci numbers get large pretty quickly, so whenever the answer has more than 8 digits, output only the first and last 4 digits of the answer, separating the two parts with an ellipsis (“...”).

There is no special way to denote the end of the of the input, simply stop when the standard input terminates (after the EOF).
 

Sample Input
  
0 1 2 3 4 5 35 36 37 38 39 40 64 65
 

Sample Output
  
0 1 1 2 3 5 9227465 14930352 24157817 39088169 63245986 1023...4155 1061...7723 1716...7565
 

Source
 

Recommend
lcy   |   We have carefully selected several similar problems for you:   1588  1757  2294  2256  2971 
 分析:本题是一道大数问题,中间涉及到一些东西,如找循环节,mod运算。思路很清楚,当n<40时,按照普通的斐波那契方法就行了,当n》40时,分别求前四位和后四位,后四位对10000取余即可,需注意的是,本题需要找循环节,因为开10的8次方的数组会超内存(实践得到的),至于前四位的求法,需借助 Fibonacci的 通项公式 ——
f(n)=1/sqrt(5)(((1+sqrt(5))/2)^n+((1-sqrt(5))/2)^n)
代码:
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<math.h>
int d[16000];
void a()
{
int i;
d[0]=0;d[1]=d[2]=1;
for(i=3;i<40;i++)
d[i]=d[i-1]+d[i-2];
}
void b()
{
int i;
for(i=40;i<16000;i++)
{
d[i]=(d[i-1]%10000+d[i-2]%10000)%10000; //快速幂乘法至今不理解!! 
 
}
}
int first(int n)
{
double ans;  
    ans=n*log10(0.5+0.5*sqrt(5.0))-0.5*log10(5.0);  
    ans=ans-(int)ans;  
    ans=pow(10.0,ans);  
    while(ans<1000)  
        ans*=10;  
    return (int)ans;

}
int main()
{
int i,n,m;
a();
b();
while(scanf("%d",&n)!=EOF)
{
if(n<40)
printf("%d\n",d[n]);
else{
printf("%d",first(n)); 
printf("...%.4d\n",d[n%15000]);
}
}
return 0;
}


To prove this identity, we will use the generating function for the Fibonacci numbers, which is given by: F(x) = 1/(1-x-x^2) We can use this generating function to derive an expression for the product of even-indexed Fibonacci numbers: f0 f2 ... f2n = F(x^2) = 1/(1-x^2-x^4)...(1-x^(2n)-x^(2n+2)) To simplify this expression, we can use the identity: 1-a^n = (1-a)(1+a+a^2+...+a^(n-1)) Using this identity, we can write: 1-x^(2n+2) = (1-x^2)(1+x^2+x^4+...+x^(2n)) Substituting this expression into the generating function, we get: f0 f2 ... f2n = 1/(1-x^2-x^4)...(1-x^(2n)(1-x^2)(1+x^2+x^4+...+x^(2n-2))) We can simplify the denominator using the formula for a geometric series: 1+x^2+x^4+...+x^(2n-2) = (x^(2n)-1)/(x^2-1) Substituting this expression into the denominator, we get: f0 f2 ... f2n = 1/(1-x^2-x^4)...(1-x^(2n) (1-x^2) (x^(2n)-1)/(x^2-1)) We can simplify this expression further by factoring out (1-x^2) from the denominator: f0 f2 ... f2n = (1-x^2)^n / (1-x^2-x^4)...(1-x^(2n) (x^(2n)-1)/(x^2-1)) We can simplify the last term using the identity: x^(2n)-1 = (x^n-1)(x^n+1) Substituting this expression into the denominator, we get: f0 f2 ... f2n = (1-x^2)^n / (1-x^2-x^4)...(1-x^n)(1+x^n)(x^n-1)(x^2-1) We can cancel out the factor of (1-x^2) from the numerator and denominator: f0 f2 ... f2n = (1-x^2)^(n-1) / (1-x^4-x^8)...(1-x^n)(1+x^n)(x^n-1)(x^2-1) Using the identity: 1-x^4-x^8-...-x^(4n) = (1-x^2)(1+x^2+x^4+...+x^(2n)) We can simplify the denominator further: f0 f2 ... f2n = (1-x^2)^(n-1) / ((1-x^2)(1+x^2+x^4+...+x^(2n-2))(1-x^n)(1+x^n)(x^n-1)(x^2-1)) We can simplify the numerator using the identity: 1-x^2 = (1-x)(1+x) Substituting this expression into the numerator, we get: f0 f2 ... f2n = (1-x)^(n-1) (1+x)^(n-1) / ((1-x)(1+x+x^2+...+x^(2n-2))(1-x^n)(1+x^n)(x^n-1)(x^2-1)) We can simplify the denominator using the formula for a geometric series: 1+x+x^2+...+x^(2n-2) = (x^(2n)-1)/(x^2-1) Substituting this expression into the denominator, we get: f0 f2 ... f2n = (1-x)^(n-1) (1+x)^(n-1) (x^n+1) / ((1-x)(x^n+1)(x^n-1)(x^2-1)) We can cancel out the factors of (1-x^n) and (x^n+1) from the numerator and denominator: f0 f2 ... f2n = (1-x)^(n-1) (1+x)^(n-1) / ((1-x)(x^n-1)(x^2-1)) Finally, we can use the identity: 1-x^n = (1-x)(1+x+x^2+...+x^(n-1)) Substituting this expression into the denominator, we get: f0 f2 ... f2n = (1-x)^(n-1) (1+x)^(n-1) / ((1-x)^2(1+x+x^2+...+x^(n-1))(x^2-1)) We can cancel out the factors of (1-x) from the numerator and denominator: f0 f2 ... f2n = (1+x)^(n-1) / ((1+x+x^2+...+x^(n-1))(x^2-1)) Using the formula for a geometric series, we can simplify the denominator: 1+x+x^2+...+x^(n-1) = (x^n-1)/(x-1) Substituting this expression into the denominator, we get: f0 f2 ... f2n = (1+x)^(n-1) (x+1) / ((x^n-1)(x+1)(x-1)) We can cancel out the factors of (x+1) from the numerator and denominator: f0 f2 ... f2n = (1+x)^(n-1) / ((x^n-1)(x-1)) Finally, we can use the formula for the nth Fibonacci number: f_n = (phi^n - (1-phi)^n)/sqrt(5) where phi = (1+sqrt(5))/2 Substituting this expression into the numerator, we get: (1+x)^(n-1) = (phi^(n-1) - (1-phi)^(n-1))/sqrt(5) Substituting this expression into the equation for f0 f2 ... f2n, we get: f0 f2 ... f2n = (phi^(2n-1) - (1-phi)^(2n-1)) / 5 We can simplify the expression for (1-phi)^(2n-1) using the identity: 1-phi = -1/phi Substituting this expression into the equation, we get: f0 f2 ... f2n = (phi^(2n-1) - (-1/phi)^(2n-1)) / 5 We can simplify the expression for (-1/phi)^(2n-1) using the identity: (-1/phi)^n = (-1)^n/phi^n Substituting this expression into the equation, we get: f0 f2 ... f2n = (phi^(2n-1) - (-1)^{2n-1}/phi^(2n-1)) / 5 We can simplify the expression for (-1)^{2n-1} using the identity: (-1)^n = -1 if n is odd, and 1 if n is even Substituting this expression into the equation, we get: f0 f2 ... f2n = (phi^(2n-1) + 1/phi^(2n-1)) / 5 Using the equation for phi, we can simplify this expression to: f0 f2 ... f2n = (F(2n+1) + (-1)^n)/2 where F(n) is the nth Fibonacci number. To complete the proof, we can use the identity: F(2n+1) = F(2n) + F(2n-1) Substituting this expression into the equation, we get: f0 f2 ... f2n = F(2n) + F(2n-1) + (-1)^n/2 Using the equation for the nth Fibonacci number, we can simplify this expression to: f0 f2 ... f2n = F(2n+1) - 1/2 + (-1)^n/2 Using the identity F(2n+1) = F(2n) + F(2n-1) again, we get: f0 f2 ... f2n = F(2n) + F(2n-1) - 1/2 + (-1)^n/2 Using the equation for the nth Fibonacci number one more time, we can simplify this expression to: f0 f2 ... f2n = F(2n+1) - 1/2 + (-1)^n/2 This completes the proof of the identity f0 f2 ... f2n = F(2n+1) - 1/2 + (-1)^n/2.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值