HDU-3672-Caves

ACM模版

描述

描述

题解

树型 DP

dp[i][j][k] 表示以 i 为子树根遍历 j 个结点, k=0 表示遍历结束回到该子树根, k=1 表示不回。

对于 k=0 的情况,当遍历子结点时,可以考虑原本的有返回遍历路径插入对应子结点的有返回遍历路径及衔接这两条路径的花费;
对于 k=1 的情况,当遍历子结点时,可以考虑原本的无返回遍历路径插入对应子结点的有返回遍历路径及衔接这两条路径的花费;也可以考虑为原本的有返回遍历路径接上对应子结点的无返回遍历路径及衔接这两条路径的花费。

上述思路核心就是 dp[i][j][k] 的定义,只要定义好,剩下的路径关系就比较容易推出来,也不会出现遗漏。

最后询问时访问一下 dp[root][k][0] dp[root][k][1] 中至少有一个小于等于 x 即最大花费的 k k 要求尽量大,所以从 k=n 开始从大到小遍历即可。

代码

#include <iostream>
#include <cstdio>
#include <cstring>

#define clr(a, b) memset(a, b, sizeof(a))

using namespace std;

typedef long long ll;

const int MAXN = 510;

int n, q;
int root;
int hed[MAXN];
int nxt[MAXN];
int cost[MAXN];
bool vis[MAXN];
ll dp[MAXN][MAXN][2];

void dfs(int x)
{
    dp[x][1][0] = dp[x][1][1] = 0;
    for (int i = hed[x]; i; i = nxt[i])
    {
        dfs(i);
        for (int j = n; j >= 2; j--)
        {
            for (int k = 1; k < j; k++)
            {
                dp[x][j][0] = min(dp[x][j][0], dp[x][k][0] + dp[i][j - k][0] + cost[i] * 2);
                dp[x][j][1] = min(dp[x][j][1], min(dp[x][k][1] + dp[i][j - k][0] + cost[i] * 2,
                                                   dp[x][k][0] + dp[i][j - k][1] + cost[i]));
            }
        }
    }
}

int main()
{
    int ce = 1;
    while (cin >> n && n)
    {
        cout << "Case " << ce++ << ":" << endl;

        clr(dp, 0x3f);
        clr(hed, 0);
        clr(vis, 0);

        int a, b, c;
        for (int i = 1; i < n; i++)
        {
            scanf("%d%d%d", &a, &b, &c);
            a++;
            b++;
            vis[a] = true;
            nxt[a] = hed[b];
            hed[b] = a;
            cost[a] = c;    //  a 与 父亲 连边的花费
        }
        for (int i = 1; i <= n; i++)
        {
            if (!vis[i])
            {
                root = i;
                dfs(i);
                break;
            }
        }

        cin >> q;

        int x, k;
        for (int i = 0; i < q; i++)
        {
            scanf("%d", &x);
            k = n;
            while (dp[root][k][0] > x && dp[root][k][1] > x)
            {
                k--;
            }
            printf("%d\n", k);
        }
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值