Given a list of non-negative numbers and a target integer k, write a function to check if the array has a continuous subarray of size at least 2 that sums up to the multiple of k, that is, sums up to n*k where n is also an integer.
Example 1:
Input: [23, 2, 4, 6, 7], k=6 Output: True Explanation: Because [2, 4] is a continuous subarray of size 2 and sums up to 6.
Example 2:
Input: [23, 2, 6, 4, 7], k=6 Output: True Explanation: Because [23, 2, 6, 4, 7] is an continuous subarray of size 5 and sums up to 42.
Note:
- The length of the array won't exceed 10,000.
- You may assume the sum of all the numbers is in the range of a signed 32-bit integer.
思路:
判断连续相同的数之和能否被k整除。一种方法是O(n2);另一种方法可以通过所有数求和的方式,并将求和后的结果对k取余,如果取余后的结果出现了相同的情况,则说明存在连续的数相加之和能被k整除。
比如[23, 2, 4, 6, 7],第一个数23不能被6整除,此时将一对key,value值保存在map里面,key = (23%6) = 5, value = 0.
接下来是2,再将一对key = (5+2)%6 = 1,value = 1保存在map里面;
接下来是4,计算得到的key = (1+4)%6 = 5,该值之前出现过,因此可以判断在上次出现该key值的位置,到当前的位置之间,存在所有数之和能被k整除。
程序如下所示:
class Solution {
public boolean checkSubarraySum(int[] nums, int k) {
Map<Integer, Integer> map = new HashMap<>();
map.put(0, -1);
int sum = 0;
for (int i = 0; i < nums.length; ++ i){
sum += nums[i];
if (k != 0){
sum %= k;
}
if (map.containsKey(sum)){
if (i - map.get(sum) >= 2){
return true;
}
}
else {
map.put(sum, i);
}
}
return false;
}
}