problem
Description
Input
Output
Sample Input
Sample Input1:
2
2 0
1.00 3.00
3.00 3.00
5 2
1.00 5.00
2.00 8.00
3.00 9.00
4.00 8.00
5.00 5.00
Sample Input2:
3
2 0
1.41 2.00
1.73 3.00
3 0
1.11 1.41
2.34 1.79
2.98 1.49
5 0
2.72 2.72
2.72 3.14
3.14 2.72
3.14 3.14
5.00 5.00
Sample Input3:
1
10 0
7.16 6.28
2.02 0.38
8.33 7.78
7.68 2.09
7.46 7.86
5.77 7.44
8.24 6.72
4.42 5.11
5.42 7.79
8.15 4.99
Sample Output
Sample Output1:
1
1
Sample Output2:
2
2
3
Sample Output3:
6
Data Constraint
analysis
容易注意到一个很明显很关键的东西:
保证1≤n≤18
这种小的离奇的数据范围提醒着我们——正解状压DP
(打记忆化搜索暴力的我会告诉你2000ms的时间也能卡过去的)
其实DP方程可以非常容易地得到
设f[i]表示把i这种状态的猪给灭掉了的01状态,i为压缩的二进制状态,0没灭1灭掉了
这还没完,还得预处理,预处理什么呢?
设
(因为穿过i和
DP方程瞬间就出来了
对了不要忘记一只鸟打一只猪的情况,没考虑这个是要WA的
code
听说c++的精度问题很迷,所以注意精度!!!
时间复杂度O(n22n)
code1(1766ms)
#include<bits/stdc++.h>
using namespace std;
int sit[20][20],f[1<<18];
double a[20][3];
double x[20],y[20];
int n,m,t,tot;
bool judge(double x,double y)
{
return abs(x-y)<(1e-6);
}
int main()
{
freopen("angrybirds.in","r",stdin);
freopen("angrybirds.out","w",stdout);
scanf("%d",&t);
while (t--)
{
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++)
{
scanf("%lf%lf",&x[i],&y[i]);
}
tot=0;
memset(sit,0,sizeof(sit));
for (int i=1;i<=n;i++)
{
for (int j=i+1;j<=n;j++)
{
if (judge(x[i],x[j]))continue;
double xx=(y[j]/x[j]-y[i]/x[i])/(x[j]-x[i]),yy=y[i]/x[i]-xx*x[i];//算抛物线方程
if (xx>=0)continue;
int temp=0;
for (int k=1;k<=n;k++)
{
if (judge(xx*x[k]+yy,y[k]/x[k]))
{
temp+=(1<<(k-1));
}
}
sit[i][j]=temp;
}
}
memset(f,127,sizeof(f));
f[0]=0;
for (int i=0;i<=(1<<n)-1;i++)
{
for (int j=1;j<=n;j++)
{
for (int k=j+1;k<=n;k++)
{
f[i|sit[j][k]]=min(f[i|sit[j][k]],f[i]+1);
}
f[i|(1<<(j-1))]=min(f[i|(1<<j-1)],f[i]+1);//一鸟打一猪
}
}
printf("%d\n",f[(1<<n)-1]);
}
return 0;
}
code2(981ms)
可以看出上面那个code慢的原因就是,可能抛物线经过的猪有重复
比如打i猪和
判断状态是否重复,剪枝即可
时间复杂度O(n2n)
#include<bits/stdc++.h>
using namespace std;
int sit[20][20],f[1<<18];
double a[20][3];
double x[20],y[20];
int n,m,t;
bool judge(double x,double y)
{
return abs(x-y)<(1e-6);
}
int main()
{
freopen("angrybirds.in","r",stdin);
freopen("angrybirds.out","w",stdout);
scanf("%d",&t);
while (t--)
{
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++)
{
scanf("%lf%lf",&x[i],&y[i]);
}
memset(sit,0,sizeof(sit));
for (int i=1;i<=n;i++)
{
for (int j=i+1;j<=n;j++)
{
if (judge(x[i],x[j]))continue;
double xx=(y[j]/x[j]-y[i]/x[i])/(x[j]-x[i]),yy=y[i]/x[i]-xx*x[i];
if (xx>=0)continue;
int temp=0;
for (int k=1;k<=n;k++)
{
if (judge(xx*x[k]+yy,y[k]/x[k]))
{
temp+=(1<<(k-1));
}
}
sit[i][j]=temp;
}
}
memset(f,127,sizeof(f));
f[0]=0;
for (int i=0;i<=(1<<n)-1;i++)
{
for (int j=1;j<=n;j++)
if(!(i&(1<<(j-1))))
{
for (int k=j+1;k<=n;k++)
{
f[i|sit[j][k]]=min(f[i|sit[j][k]],f[i]+1);
}
f[i|(1<<(j-1))]=min(f[i|(1<<j-1)],f[i]+1);
}
}
printf("%d\n",f[(1<<n)-1]);
}
return 0;
}
code3(179ms)
真心不知道那些打到200ms-的爷都怎么打的,点开一看——
——发现只是加了一个break???
好吧我输了……
#include<bits/stdc++.h>
using namespace std;
int sit[20][20],f[1<<18];
double a[20][3];
double x[20],y[20];
int n,m,t;
bool judge(double x,double y)
{
return abs(x-y)<(1e-6);
}
int main()
{
freopen("angrybirds.in","r",stdin);
freopen("angrybirds.out","w",stdout);
scanf("%d",&t);
while (t--)
{
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++)
{
scanf("%lf%lf",&x[i],&y[i]);
}
memset(sit,0,sizeof(sit));
for (int i=1;i<=n;i++)
{
for (int j=i+1;j<=n;j++)
{
if (judge(x[i],x[j]))continue;
double xx=(y[j]/x[j]-y[i]/x[i])/(x[j]-x[i]),yy=y[i]/x[i]-xx*x[i];
if (xx>=0)continue;
int temp=0;
for (int k=1;k<=n;k++)
{
if (judge(xx*x[k]+yy,y[k]/x[k]))
{
temp+=(1<<(k-1));
}
}
sit[i][j]=temp;
}
}
memset(f,127,sizeof(f));
f[0]=0;
for (int i=0;i<=(1<<n)-1;i++)
{
for (int j=1;j<=n;j++)
if(!(i&(1<<(j-1))))
{
for (int k=j+1;k<=n;k++)
{
f[i|sit[j][k]]=min(f[i|sit[j][k]],f[i]+1);
}
f[i|(1<<(j-1))]=min(f[i|(1<<j-1)],f[i]+1);
break;
}
}
printf("%d\n",f[(1<<n)-1]);
}
return 0;
}