1.概念原理
gooleNet:既能保持网络结构的稀疏性,又能利用密集矩阵的高计算性能
- inception: 多候选卷积核 ,取最佳
·concatenate:拼接张量;
· average polling: 保证宽高一致
· 1x1卷积核:改变通道数量(通道相加);减少运算的数量;跨越不同通道,相同元素的值
2.代码实现
# author:ZhuYuYing
# data:2021/7/12
# projectName:tor-start
import torch
import torch.nn as nn
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
# prepare dataset
batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) # 归一化,均值和方差
train_dataset = datasets.MNIST(root='../dataset/mnist/', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='../dataset/mnist/', train=False, downlo

最低0.47元/天 解锁文章
2673

被折叠的 条评论
为什么被折叠?



