题解-【模板】单源最短路径(弱化版)

本文介绍了如何使用SPFA算法解决有向图的单源最短路径问题,详细阐述了算法思路和处理负权边的情况,并提供了数据规模和样例解释。

【模板】单源最短路径(弱化版)

题目背景
本题测试数据为随机数据,在考试中可能会出现构造数据让SPFA不通过,如有需要请移步 P4779。

题目描述
如题,给出一个有向图,请输出从某一点出发到所有点的最短路径长度。

输入输出格式
输入格式:
第一行包含三个整数N、M、S,分别表示点的个数、有向边的个数、出发点的编号。

接下来M行每行包含三个整数Fi、Gi、Wi,分别表示第i条有向边的出发点、目标点和长度。

输出格式:
一行,包含N个用空格分隔的整数,其中第i个整数表示从点S出发到点i的最短路径长度(若S=i则最短路径长度为0,若从点S无法到达点i,则最短路径长度为2147483647)

输入输出样例
输入样例#1:
4 6 1
1 2 2
2 3 2
2 4 1
1 3 5
3 4 3
1 4 4
输出样例#1:
0 2 4 3
说明
时空限制:1000ms,128M

数据规模:

对于20%的数据:N<=5,M<=15;

对于40%的数据:N<=100,M<=10000;

对于70%的数据:N<=1000,M<=100000;

对于100%的数据:N<=10000,M<=500000。保证数据随机。

对于真正 100% 的数据,请移步 P4779。请注意,该题与本题数据范围略有不同。

样例说明:

在这里插入图片描述

图片1到3和1到4的文字位置调换
思路:本题用SPFA算法可以完成,就是求有向图上一个原点到其他最短路的距离。
但是,这个题可能有负边权,就可以用SPFA算法来完成。原点到自身的距离为0,到其他原点

引用中提到,路径规划问题是当下研究的热之一,蚁群算法因其系统性、鲁棒性和正反馈性等特而成为解决路径规划问题的有效方法。这种算法被广泛应用于旅行商问题、机器人路径规划、车辆路径规划问题和灾后应急疏散等领域。研究者在论文中主要研究了蚁群算法在路径规划问题中的应用,重解决了基于蚁群算法的单源最短路径问题,并探索了蚁群算法用于解决多源多汇路径规划问题的可行性。 引用中提到,单源最短路径问题是指在给定的带权有向图中,计算从一个到其它各顶最短路径长度。也就是要找到从源到其他各顶的路径中,总权值最小的路径。 引用中介绍了蚁群算法的基本思想。首先,根据具体问题设置多只蚂蚁并行搜索,每只蚂蚁完成一次周游后,在行进的路上释放信息素,信息素量与解的质量成正比。蚂蚁路径的选择根据信息素强度大小和两之间的距离,采用随机的局部搜索策略。每只蚂蚁只能走合法路线,通过设置禁忌表来控制。所有蚂蚁完成一次搜索后,对所有边进行信息素更新,然后进行新一轮的搜索。当达到预定的迭代步数或出现停滞现象时,算法结束,以当前最优解作为问题的最优解。 因此,如果你想使用蚁群算法解决单源多目标最短路径问题,你可以在MATLAB中实现蚁群算法,并根据具体问题设置多只蚂蚁并行搜索,通过信息素的释放和更新来寻找最短路径。你可以根据论文中提到的蚁群算法的基本思想和参数优化设置,设计一个适合你问题的算法,并通过仿真实验来验证算法的有效性和收敛性。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [【路径规划】基于蚁群算法求解各节最短路径matlab代码](https://blog.youkuaiyun.com/qq_59747472/article/details/122104332)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [MATLAB蚁群算法求解单源多目标的最短路径寻优问题实例代码](https://blog.youkuaiyun.com/waterstar2010/article/details/114437249)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值