《Python深度学习》第三讲:神经网络

在前面的课程里,我们已经了解了深度学习的数学基础,也用一个简单的例子展示了神经网络的强大能力。本讲我们要更深入地探讨神经网络的结构、训练过程,以及如何用它解决实际问题。


3.1 神经网络剖析

先来聊聊神经网络的核心组件:层(Layer)。

想象一下,你有一堆积木,你可以用这些积木搭建出各种各样的东西。在神经网络里,层就像是这些积木,你可以用它们搭建出复杂的模型。每一层都有自己的功能,比如,有些层可以处理图像数据,有些层可以处理时间序列数据。这些层组合在一起,就形成了一个强大的神经网络。

我们来看看最常见的几种层。

  • Dense层:这是最简单的层,它处理的是向量数据。比如,你有一组数字,Dense层可以对这些数字进行变换,提取出更有用的信息。
  • Conv2D层:这个层专门用来处理图像数据。它可以在图像中找到局部的模式,比如边缘、纹理等。这对于图像分类任务特别有用。
  • LSTM层:这个层用来处理时间序列数据,比如股票价格、天气数据等。它可以记住过去的信息,对未来做出预测。

神经网络的结构就像是一个数据处理的流水

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值