- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊
一、 前期准备
1. 导入库
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib
import os,PIL,random,pathlib
import torch.nn.functional as F
from PIL import Image
import matplotlib.pyplot as plt
#隐藏警告
import warnings
2.导入数据
data_dir = './data/4-data/'
data_dir = pathlib.Path(data_dir)
#print(data_dir)
data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[2] for path in data_paths]
#print(classeNames)
total_datadir = './data/4-data/'
train_transforms = transforms.Compose([
transforms.Resize([224, 224]), # 将输入图片resize成统一尺寸
transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
transforms.Normalize( # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]) # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])
total_data = datasets.ImageFolder(total_datadir,transform=train_transforms)
3.划分数据集
train_size = int(0.8 * len(total_data))
test_size = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
batch_size = 32
train_dl = torch.utils.data.DataLoader(train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=1)
二、模型设计
1. 神经网络的搭建
class SqueezeExcitation(nn.Module):
def __init__(self, in_channels, reduced_dim):
super(SqueezeExcitation, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc1 = nn.Linear(in_channels, reduced_dim)
self.fc2 = nn.Linear(reduced_dim, in_channels)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
def forward(self, x):
batch_size, channels, _, _ = x.size()
squeeze = self.avg_pool(x).view(batch_size, channels)
excitation = self.fc1(squeeze)
excitation = self.relu(excitation)
excitation = self.fc2(excitation)
excitation = self.sigmoid(excitation).view(batch_size, channels, 1, 1)
scaled = x * excitation
return scaled
class ConvBlock(nn.Module):
def __init__(self, input_channels, growth_rate):
super(ConvBlock, self).__init__()
self.norm1 = nn.BatchNorm2d(input_channels)
self.conv1 = nn.Conv2d(input_channels, 4 * growth_rate, kernel_size=1, bias=False)
self.norm2 = nn.BatchNorm2d(4 * growth_rate)
self.conv2 = nn.Conv2d(4 * growth_rate, growth_rate, kernel_size=3, padding=1, bias=False)
def forward(self, x):
out = self.conv1(F.relu(self.norm1(x)))
out = self.conv2(F.relu(self.norm2(out)))
return torch.cat([x, out], 1)
class DenseBlock(nn.Module):
def __init__(self, num_layers, input_channels, growth_rate):
super(DenseBlock, self).__init__()
layers = []
for i in range(num_layers):
layers.append(ConvBlock(input_channels + i * growth_rate, growth_rate))
self.layers = nn.Sequential(*layers)
def forward(self, x):
return self.layers(x)
class TransitionBlock(nn.Module):
def __init__(self, input_channels, output_channels):
super(TransitionBlock, self).__init__()
self.norm = nn.BatchNorm2d(input_channels)
self.conv = nn.Conv2d(input_channels, output_channels, kernel_size=1, bias=False)
self.pool = nn.AvgPool2d(2, stride=2)
def forward(self, x):
x = self.conv(F.relu(self.norm(x)))
return self.pool(x)
class DenseNet121(nn.Module):
def __init__(self, num_classes=4, growth_rate=32):
super(DenseNet121, self).__init__()
self.growth_rate = growth_rate
# Initial convolution
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.norm1 = nn.BatchNorm2d(64)
self.pool = nn.MaxPool2d(3, stride=2, padding=1)
# Dense blocks
self.dense1 = DenseBlock(6, 64, growth_rate)
self.trans1 = TransitionBlock(64 + 6 * growth_rate, 128)
self.dense2 = DenseBlock(12, 128, growth_rate)
self.trans2 = TransitionBlock(128 + 12 * growth_rate, 256)
self.dense3 = DenseBlock(24, 256, growth_rate)
self.trans3 = TransitionBlock(256 + 24 * growth_rate, 512)
self.dense4 = DenseBlock(16, 512, growth_rate)
# SE Module
final_channels = 512 + 16 * growth_rate
self.se = SqueezeExcitation(final_channels, 16)
# Final layers
self.norm_final = nn.BatchNorm2d(final_channels)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(final_channels, num_classes)
def forward(self, x):
x = F.relu(self.norm1(self.conv1(x)))
x = self.pool(x)
x = self.dense1(x)
x = self.trans1(x)
x = self.dense2(x)
x = self.trans2(x)
x = self.dense3(x)
x = self.trans3(x)
x = self.dense4(x)
x = self.se(x)
x = F.relu(self.norm_final(x))
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc(x)
return x
2.设置损失值等超参数
model = DenseNet121(num_classes=len(classeNames)).to(device)
#print(device)
loss_fn = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-4 # 学习率
opt = torch.optim.SGD(model.parameters(),lr=learn_rate)
epochs = 20
train_loss = []
train_acc = []
test_loss = []
test_acc = []
3. 设置训练函数
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset) # 训练集的大小,一共60000张图片
num_batches = len(dataloader) # 批次数目,1875(60000/32)
train_loss, train_acc = 0, 0 # 初始化训练损失和正确率
for X, y in dataloader: # 获取图片及其标签
X, y = X.to(device), y.to(device)
# 计算预测误差
pred = model(X) # 网络输出
loss = loss_fn(pred, y) # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
# 反向传播
optimizer.zero_grad() # grad属性归零
loss.backward() # 反向传播
optimizer.step() # 每一步自动更新
# 记录acc与loss
train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
train_loss += loss.item()
train_acc /= size
train_loss /= num_batches
return train_acc, train_loss
4. 设置测试函数
def test(dataloader, model, loss_fn):
size = len(dataloader.dataset) # 测试集的大小,一共10000张图片
num_batches = len(dataloader) # 批次数目,313(10000/32=312.5,向上取整)
test_loss, test_acc = 0, 0
# 当不进行训练时,停止梯度更新,节省计算内存消耗
with torch.no_grad():
for imgs, target in dataloader:
imgs, target = imgs.to(device), target.to(device)
# 计算loss
target_pred = model(imgs)
loss = loss_fn(target_pred, target)
test_loss += loss.item()
test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()
test_acc /= size
test_loss /= num_batches
return test_acc, test_loss
5. 创建导入本地图片预处理模块
def predict_one_image(image_path, model, transform, classes):
test_img = Image.open(image_path).convert('RGB')
# plt.imshow(test_img) # 展示预测的图片
test_img = transform(test_img)
img = test_img.to(device).unsqueeze(0)
model.eval()
output = model(img)
_, pred = torch.max(output, 1)
pred_class = classes[pred]
print(f'预测结果是:{pred_class}')
6. 主函数
if __name__ == '__main__':
for epoch in range(epochs):
model.train()
epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
train_acc.append(epoch_train_acc)
train_loss.append(epoch_train_loss)
test_acc.append(epoch_test_acc)
test_loss.append(epoch_test_loss)
template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
print(template.format(epoch + 1, epoch_train_acc * 100, epoch_train_loss, epoch_test_acc * 100, epoch_test_loss))
print('Done')
warnings.filterwarnings("ignore") # 忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100 # 分辨率
epochs_range = range(epochs)
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
classes = list(total_data.class_to_idx)
predict_one_image(image_path='./data/4-data/Monkeypox/M01_01_00.jpg',
model=model,
transform=train_transforms,
classes=classes)
结果
Epoch: 1, Train_acc:46.4%, Train_loss:0.725, Test_acc:46.6%,Test_loss:0.700
Epoch: 2, Train_acc:51.8%, Train_loss:0.689, Test_acc:54.3%,Test_loss:0.672
Epoch: 3, Train_acc:57.5%, Train_loss:0.671, Test_acc:61.3%,Test_loss:0.658
Epoch: 4, Train_acc:62.9%, Train_loss:0.659, Test_acc:63.2%,Test_loss:0.648
Epoch: 5, Train_acc:65.4%, Train_loss:0.651, Test_acc:64.6%,Test_loss:0.641
Epoch: 6, Train_acc:65.0%, Train_loss:0.648, Test_acc:65.0%,Test_loss:0.634
Epoch: 7, Train_acc:66.8%, Train_loss:0.642, Test_acc:67.1%,Test_loss:0.633
Epoch: 8, Train_acc:66.1%, Train_loss:0.636, Test_acc:66.2%,Test_loss:0.624
Epoch: 9, Train_acc:65.8%, Train_loss:0.636, Test_acc:66.7%,Test_loss:0.623
Epoch:10, Train_acc:67.0%, Train_loss:0.627, Test_acc:66.0%,Test_loss:0.622
Done
Done
三、DenseNet系列算法中插入SE-Net通道注意力机制
1. 技术原理
- DenseNet的核心思想:
通过密集连接(Dense Connection),使每一层的输入来自前面所有层的输出,实现特征复用和梯度高效传播,缓解梯度消失问题。 - SE-Net的核心思想:
通过Squeeze-and-Excitation模块动态调整通道权重,增强重要通道的响应,抑制无关通道。具体步骤包括:- Squeeze:全局平均池化(Global Average Pooling)压缩空间信息,生成通道描述向量。
- Excitation:通过全连接层(或瓶颈结构)学习通道间非线性关系,生成通道权重。
- Scale:将权重与原特征图相乘,完成通道加权。
2. 插入SE模块的实现方式
在DenseNet中插入SE模块的常见位置包括:
- 在每个Dense Block内部:
在Dense Block的每个卷积层后插入SE模块(例如在每个Conv+BN+ReLU
后),增强局部特征的通道注意力。 - 在相邻Dense Block之间:
在Transition Layer(包含池化和1×1卷积)后插入SE模块,对全局特征进行通道重标定。 - 混合插入策略:
根据计算资源权衡,选择性地在关键位置插入SE模块(例如仅在某些Dense Block中使用)。
3. 优势分析
- 增强特征选择能力:
SE模块通过通道注意力机制,使DenseNet更关注对当前任务重要的特征通道,抑制冗余信息,尤其适合密集连接中特征高度复用的情况。 - 提升模型鲁棒性:
在复杂场景(如遮挡、噪声)下,通道注意力能动态调整特征权重,提升模型对关键区域的敏感性。 - 兼容性强:
SE模块是轻量级的,增加的参数量和计算量较小(主要来自全连接层),适合嵌入到DenseNet的密集连接结构中。 - 可解释性改进:
通道权重可视化可帮助理解模型关注的特征类型。
4. 本文实现的方式
在提供的代码中,SE-Net通道注意力模块(SqueezeExcitation
)被插入在最后一个Dense Block的输出之后,具体位置如下图所示:
[DenseBlock1] → [Transition1] → [DenseBlock2] → [Transition2] → [DenseBlock3] → [Transition3] → [DenseBlock4] → [SE模块] → [全局池化+分类头]
关键实现分析
(1) SE模块插入位置
- 位置:仅在网络的最后一个Dense Block(
dense4
)的输出后插入SE模块。 - 作用范围:仅对最终输出的特征图进行通道权重调整,影响分类前的特征表示。
- 对应代码片段:
class DenseNet121(nn.Module): def __init__(self, num_classes=4, growth_rate=32): # ...(前面的层定义) # 最后一个Dense Block的输出通道数计算 final_channels = 512 + 16 * growth_rate # SE模块插入在此处 self.se = SqueezeExcitation(final_channels, 16) def forward(self, x): # ...(前向传播到最后一个Dense Block) x = self.dense4(x) x = self.se(x) # 应用SE模块 # ...(后续分类头)
(2) SE模块设计
- 实现细节:
- 使用全局平均池化(
AdaptiveAvgPool2d(1)
)压缩空间维度。 - 两个全连接层(
fc1
和fc2
)生成通道权重,reduction_ratio=16
。 - 通过Sigmoid激活生成权重后,对原特征图进行通道加权。
- 使用全局平均池化(
- 代码验证:
class SqueezeExcitation(nn.Module): def __init__(self, in_channels, reduced_dim): super().__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc1 = nn.Linear(in_channels, reduced_dim) self.fc2 = nn.Linear(reduced_dim, in_channels) self.relu = nn.ReLU() self.sigmoid = nn.Sigmoid() def forward(self, x): batch_size, channels = x.size(0), x.size(1) squeeze = self.avg_pool(x).view(batch_size, channels) excitation = self.relu(self.fc1(squeeze)) excitation = self.sigmoid(self.fc2(excitation)) excitation = excitation.view(batch_size, channels, 1, 1) return x * excitation
(3) 与DenseNet原结构的对比
- 原版DenseNet-121流程:
[DenseBlock1] → [Transition1] → [DenseBlock2] → [Transition2] → [DenseBlock3] → [Transition3] → [DenseBlock4] → [分类头]
- SE插入后的流程:
[DenseBlock1] → [Transition1] → ... → [DenseBlock4] → [SE模块] → [分类头]
插入方式的优缺点
✅ 优势
- 计算成本低:
仅添加一个SE模块,参数量增加极小(例如final_channels=1024
时,SE模块参数量为1024 + (1024//16)*1024 ≈ 65K
),对整体计算量影响较小。 - 分类任务适配性:
最终特征图包含高层语义信息,通过SE模块增强关键通道,可能直接提升分类精度。 - 实现简单:
无需修改Dense Block内部结构,代码侵入性低。
❌ 局限性
- 局部特征未被优化:
SE模块仅作用于最后一层,无法对中间层的特征通道进行动态调整,忽略了DenseNet中多层特征复用的特性。 - 通道冗余风险:
深层特征可能因密集连接积累大量冗余通道,仅末端调整可能无法充分抑制噪声。 - 轻量化改进空间:
若在多个Dense Block后插入SE模块(如每个Transition后),可能进一步提升性能,但需权衡计算开销。
总结
在DenseNet中插入SE模块是一种低成本、高收益的改进策略,通过通道注意力机制增强模型的特征选择能力,尤其适合需要高精度但对计算资源不敏感的场景。实际应用中需根据任务需求权衡计算开销和性能提升,并通过消融实验确定最佳插入位置和参数配置。