P26:糖尿病预测改进

一、进阶说明

通过矩阵图发现一些无关的特征对预测结果捎有影响,所以去掉一些无用的特征以提升精度

二、代码实现

1.导入库函数

import torch.nn as nn
import torch.nn.functional as F
import torchvision,torch
import plotly
import plotly.express as px
from sklearn.preprocessing import StandardScaler
# 设置硬件设备,如果有GPU则使用,没有则使用cpu
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
import matplotlib.pyplot as plt
#隐藏警告
import warnings
import numpy as np

import pandas as pd
import seaborn as sns
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt

2.导入数据

plt.rcParams['savefig.dpi'] = 500 #图片像素
plt.rcParams['figure.dpi'] = 500 #分辨率
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
warnings.filterwarnings("ignore")
DataFrame=pd.read_excel(r"E:\Code\pytorch_gpu\data\dia.xls")
print(DataFrame.head())

# 查看数据是否有缺失值
print('数据缺失值---------------------------------')
print(DataFrame.isnull().sum())
# 查看数据是否有重复值
print('数据重复值---------------------------------')
print('数据集的重复值为:'f'{DataFrame.duplicated().sum()}')
         卡号  性别  年龄  高密度脂蛋白胆固醇  低密度脂蛋白胆固醇  ...   尿素氮     尿酸  肌酐  体重检查结果  是否糖尿病
0  18054421   0  38       1.25       2.99  ...  4.99  243.3  50       1      0
1  18054422   0  31       1.15       1.99  ...  4.72  391.0  47       1      0
2  18054423   0  27       1.29       2.21  ...  5.87  325.7  51       1      0
3  18054424   0  33       0.93       2.01  ...  2.40  203.2  40       2      0
4  18054425   0  36       1.17       2.83  ...  4.09  236.8  43       0      0

[5 rows x 16 columns]
数据缺失值---------------------------------
卡号            0
性别            0
年龄            0
高密度脂蛋白胆固醇     0
低密度脂蛋白胆固醇     0
极低密度脂蛋白胆固醇    0
甘油三酯          0
总胆固醇          0
脉搏            0
舒张压           0
高血压史          0
尿素氮           0
尿酸            0
肌酐            0
体重检查结果        0
是否糖尿病         0
dtype: int64
数据重复值---------------------------------
数据集的重复值为:0

3.数据分布分析

feature_map = {

'年龄': '年龄',

'高密度脂蛋白胆固醇': '高密度脂蛋白胆固醇',

'低密度脂蛋白胆固醇': '低密度脂蛋白胆固醇',

'极低密度脂蛋白胆固醇': '极低密度脂蛋白胆固醇',

'甘油三酯': '甘油三酯',

'总胆固醇': '总胆固醇',

'脉搏': '脉搏',

'舒张压':'舒张压',

'高血压史':'高血压史',

'尿素氮':'尿素氮',

'尿酸':'尿酸',

'肌酐':'肌酐',

'体重检查结果':'体重检查结果'

}
plt.figure(figsize=(15, 10))

for i, (col, col_name) in enumerate(feature_map.items(), 1):
    plt.subplot(3, 5, i)
    sns.boxplot(x=DataFrame['是否糖尿病'], y=DataFrame[col])
    plt.title(f'{col_name}的箱线图', fontsize=14)
    plt.ylabel('数值', fontsize=12)
    plt.grid(axis='y', linestyle='--', alpha=0.7)

plt.tight_layout()
plt.show()

在这里插入图片描述

4.数据集构建

#删除卡号列
DataFrame.drop(columns=['卡号'], inplace=True)
#计算割裂之间的相关系数
df_corr = DataFrame.corr()

#相关矩阵生成函数
def corr_generate(df):
    fig = px.imshow(df, text_auto=True, aspect="auto", color_continuous_scale="RdBu_r")
    fig.show()
#生成相关矩阵
corr_generate(df_corr)


# '高密度脂蛋白胆固醇'字段与糖尿病负相关,故而在 X 中去掉该字段
X = DataFrame.drop(['是否糖尿病','高密度脂蛋白胆固醇'],axis=1)
y = DataFrame['是否糖尿病']

sc_X = StandardScaler()
X = sc_X.fit_transform(X)
X = torch.tensor(np.array(X), dtype=torch.float32)
y = torch.tensor(np.array(y), dtype=torch.int64)
train_X, test_X, train_y, test_y = train_test_split(X, y,
test_size=0.2,
random_state=1)

train_X = train_X.unsqueeze(1)
test_X = test_X.unsqueeze(1)
print(train_X.shape, train_y.shape)#

from torch.utils.data import TensorDataset, DataLoader


train_dl = DataLoader(TensorDataset(train_X, train_y),
        batch_size=64,
        shuffle=False)
test_dl = DataLoader(TensorDataset(test_X, test_y),
        batch_size=64,
        shuffle=False)

在这里插入图片描述

5.模型构建

class model_lstm(nn.Module):
    def __init__(self):
        super(model_lstm, self).__init__()
        self.lstm0 = nn.LSTM(input_size=13 ,hidden_size=200,
        num_layers=1, batch_first=True)
        self.lstm1 = nn.LSTM(input_size=200 ,hidden_size=200,
        num_layers=1, batch_first=True)
        self.fc0 = nn.Linear(200, 2)

    def forward(self, x):
        out, hidden1 = self.lstm0(x)
        out, _ = self.lstm1(out, hidden1)
        out = self.fc0(out)
        return out

model = model_lstm().to(device)
model lstm(
	(lstm0):LSTM(13200,batch first=True)
	(1stm1):LSTM(200200,batch first=True)
	(fc0): Linear(in features=200,out features=2,bias=True)

6.构建测试训练

def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset) # 训练集的大小
    num_batches = len(dataloader) # 批次数目, (size/batch_size,向上取整)
    train_loss, train_acc = 0, 0 # 初始化训练损失和正确率
    for X, y in dataloader: # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        # 计算预测误差
        pred = model(X) # 网络输出
        loss = loss_fn(pred, y) # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        # 反向传播
        optimizer.zero_grad() # grad属性归零
        loss.backward() # 反向传播
        optimizer.step() # 每一步自动更新
        # 记录acc与loss
        train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
    train_acc /= size
    train_loss /= num_batches
    return train_acc, train_loss

7. 构建训练函数

def test (dataloader, model, loss_fn):
    size = len(dataloader.dataset) # 测试集的大小
    num_batches = len(dataloader) # 批次数目, (size/batch_size,向上取整)
    test_loss, test_acc = 0, 0
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            # 计算loss
            target_pred = model(imgs)
            loss = loss_fn(target_pred, target)
            test_loss += loss.item()
            test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()
    test_acc /= size
    test_loss /= num_batches
    return test_acc, test_loss

8.训练模型

loss_fn = nn.CrossEntropyLoss() # 创建损失函数

learn_rate = 1e-4 # 学习率

opt = torch.optim.Adam(model.parameters(),lr=learn_rate)

epochs = 30


train_loss = []

train_acc = []

test_loss = []

test_acc = []


for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    # 获取当前的学习率
    lr = opt.state_dict()['param_groups'][0]['lr']
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss,
    epoch_test_acc*100, epoch_test_loss, lr))
    print("="*20, 'Done', "="*20)
Epoch: 1, Train_acc:56.2%, Train_loss:0.685, Test_acc:52.5%, Test_loss:0.690, Lr:1.00E-04
==================== Done ====================
Epoch: 2, Train_acc:58.5%, Train_loss:0.676, Test_acc:57.4%, Test_loss:0.683, Lr:1.00E-04
==================== Done ====================
Epoch: 3, Train_acc:64.6%, Train_loss:0.665, Test_acc:60.4%, Test_loss:0.675, Lr:1.00E-04
==================== Done ====================
Epoch: 4, Train_acc:66.5%, Train_loss:0.654, Test_acc:62.9%, Test_loss:0.667, Lr:1.00E-04
==================== Done ====================
Epoch: 5, Train_acc:69.5%, Train_loss:0.640, Test_acc:64.9%, Test_loss:0.656, Lr:1.00E-04
==================== Done ====================
Epoch: 6, Train_acc:71.6%, Train_loss:0.624, Test_acc:66.8%, Test_loss:0.644, Lr:1.00E-04
==================== Done ====================
Epoch: 7, Train_acc:73.4%, Train_loss:0.606, Test_acc:70.3%, Test_loss:0.631, Lr:1.00E-04
==================== Done ====================
Epoch: 8, Train_acc:74.5%, Train_loss:0.586, Test_acc:72.8%, Test_loss:0.616, Lr:1.00E-04
==================== Done ====================
Epoch: 9, Train_acc:74.6%, Train_loss:0.564, Test_acc:73.3%, Test_loss:0.601, Lr:1.00E-04
==================== Done ====================
Epoch:10, Train_acc:75.1%, Train_loss:0.543, Test_acc:73.8%, Test_loss:0.587, Lr:1.00E-04
==================== Done ====================
Epoch:11, Train_acc:75.4%, Train_loss:0.523, Test_acc:74.8%, Test_loss:0.574, Lr:1.00E-04
==================== Done ====================
Epoch:12, Train_acc:75.6%, Train_loss:0.506, Test_acc:74.8%, Test_loss:0.562, Lr:1.00E-04
==================== Done ====================
Epoch:13, Train_acc:75.6%, Train_loss:0.492, Test_acc:74.8%, Test_loss:0.552, Lr:1.00E-04
==================== Done ====================
Epoch:14, Train_acc:75.7%, Train_loss:0.481, Test_acc:75.7%, Test_loss:0.543, Lr:1.00E-04
==================== Done ====================
Epoch:15, Train_acc:76.9%, Train_loss:0.472, Test_acc:75.2%, Test_loss:0.535, Lr:1.00E-04
==================== Done ====================
Epoch:16, Train_acc:77.0%, Train_loss:0.464, Test_acc:75.2%, Test_loss:0.528, Lr:1.00E-04
==================== Done ====================
Epoch:17, Train_acc:77.7%, Train_loss:0.458, Test_acc:75.7%, Test_loss:0.522, Lr:1.00E-04
==================== Done ====================
Epoch:18, Train_acc:78.1%, Train_loss:0.452, Test_acc:76.2%, Test_loss:0.516, Lr:1.00E-04
==================== Done ====================
Epoch:19, Train_acc:78.2%, Train_loss:0.448, Test_acc:76.7%, Test_loss:0.510, Lr:1.00E-04
==================== Done ====================
Epoch:20, Train_acc:78.2%, Train_loss:0.444, Test_acc:76.7%, Test_loss:0.505, Lr:1.00E-04
==================== Done ====================
Epoch:21, Train_acc:78.6%, Train_loss:0.440, Test_acc:77.7%, Test_loss:0.500, Lr:1.00E-04
==================== Done ====================
Epoch:22, Train_acc:78.6%, Train_loss:0.436, Test_acc:78.2%, Test_loss:0.496, Lr:1.00E-04
==================== Done ====================
Epoch:23, Train_acc:78.6%, Train_loss:0.433, Test_acc:78.7%, Test_loss:0.492, Lr:1.00E-04
==================== Done ====================
Epoch:24, Train_acc:79.1%, Train_loss:0.430, Test_acc:79.2%, Test_loss:0.488, Lr:1.00E-04
==================== Done ====================
Epoch:25, Train_acc:79.2%, Train_loss:0.428, Test_acc:79.2%, Test_loss:0.484, Lr:1.00E-04
==================== Done ====================
Epoch:26, Train_acc:79.2%, Train_loss:0.425, Test_acc:79.7%, Test_loss:0.480, Lr:1.00E-04
==================== Done ====================
Epoch:27, Train_acc:79.4%, Train_loss:0.423, Test_acc:79.7%, Test_loss:0.477, Lr:1.00E-04
==================== Done ====================
Epoch:28, Train_acc:79.5%, Train_loss:0.421, Test_acc:79.7%, Test_loss:0.474, Lr:1.00E-04
==================== Done ====================
Epoch:29, Train_acc:79.7%, Train_loss:0.418, Test_acc:78.7%, Test_loss:0.471, Lr:1.00E-04
==================== Done ====================
Epoch:30, Train_acc:79.9%, Train_loss:0.417, Test_acc:78.7%, Test_loss:0.468, Lr:1.00E-04
==================== Done ====================

9.模型评估

warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

from datetime import datetime
current_time = datetime.now() # 获取当前时间

epochs_range = range(epochs)

plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.xlabel(current_time) # 打卡请带上时间戳,否则代码截图无效
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值