import torchsummary
from torchvision.transforms import transforms
from torch.utils.data import DataLoader
from torchvision import datasets
import torchvision.models as models
import torch.nn.functional as F
import torch.nn as nn
import torch,torchvision
import os,PIL,random,pathlib
import matplotlib.pyplot as plt
import numpy as np
import os
import pandas as pd
from torchvision.io import read_image
from torch.utils.data import Dataset
import torch.utils.data as data
from PIL import Image
from torch.autograd import Variable
import numpy as np
import matplotlib.pyplot as plt
from datetime import datetime
#可视化车牌#plt.figure(figsize=(14, 5))#plt.suptitle("数据示例", fontsize=15)# for i in range(18):# plt.subplot(3, 6, i + 1)# # plt.xticks([])# # plt.yticks([])# # plt.grid(False)## # 显示图片# images = plt.imread(data_paths_str[i])# plt.imshow(images)## plt.show()
三、标签和字符串数字化
char_enum =["京","沪","津","渝","冀","晋","蒙","辽","吉","黑","苏","浙","皖","闽","赣","鲁",\
"豫","鄂","湘","粤","桂","琼","川","贵","云","藏","陕","甘","青","宁","新","军","使"]
number =[str(i)for i inrange(0,10)]# 0 到 9 的数字
alphabet =[chr(i)for i inrange(65,91)]# A 到 Z 的字母
char_set = char_enum + number + alphabet
char_set_len =len(char_set)
label_name_len =len(classeNames[0])# 将字符串数字化deftext2vec(text):
vector = np.zeros([label_name_len, char_set_len])for i, c inenumerate(text):
idx = char_set.index(c)
vector[i][idx]=1.0return vector
all_labels =[text2vec(i)for i in classeNames]