在面对无约束的优化命题时,我们可以采用牛顿法等方法来求解。而面对有约束的命题时,我们往往需要更高级的算法。单纯形法(Simplex Method)可以用来求解带约束的线性规划命题(LP),与之类似的有效集法(Active Set Method)可以用来求解带约束的二次规划(QP),而内点法(Interior Point Method)则是另一种用于求解带约束的优化命题的方法。而且无论是面对LP还是QP,内点法都显示出了相当的极好的性能,例如多项式的算法复杂度。本文主要介绍两种内点法,障碍函数法(Barrier Method)和原始对偶法(Primal-Dual Method)。其中障碍函数法的内容主要来源于Stephen Boyd与Lieven Vandenberghe的Convex Optimization一书,原始对偶法的内容主要来源于Jorge Nocedal和Stephen J. Wright的Numerical Optimization一书(第二版)。
为了便于与原书对照理解,后面的命题与公式分别采用了对应书中的记法,并且两者方法针对的是不同的命题。两种方法中的同一变量可能在不同的方法中有不同的意义,如 μ 。在介绍玩两种方法后会有一些比较。
障碍函数法(Barrier Method)
对于障碍函数法,我们考虑一个一般性的优化命题:
我们可以看出,KKT条件中的不等式使得对KKT系统的求解难以为继,因此Barrier Method的思想就是通过在原始的目标函数中添加一个障碍函数(也可以理解成惩罚函数)来代替约束条件中的不等式约束。也就是说,把命题(1)变成下面的样子:
但是很可惜,红色虚线的这个函数在某些点上是不可导的,因此并不适用,那么下面的想法就是用类似的函数,比如上图中的几条蓝色曲线表示的函数来近似这个函数。这样一个近似的函数的表达式如下:
这里我们定义如下的对数障碍(logarithmic barrier):
Central Path
针对(6)中不同的 t>0 值,我们定义 x∗(t) 为相应优化命题的解。那么,central path 就是指所有点