Calculate Linux 13 Beta 1 发布

CalculateLinux发布了新版本,基于Gentoo的发行版,提供CalculateLinuxDesktop及CalculateLinuxServer两个版本,支持KDE 4.9.4及GNOME 3.4等桌面环境。

Calculate Linux是俄罗斯语的基于Gentoo的发行和自启动运行DVD,其目标在于能在任意数量的计算机上都易于使用、安装和升级。它提供两种版 本,Calculate Linux Desktop(CLD)和Calculate Linux Server(CLS)。

下载地址:

新版本更新 KDE 到 4.9.4; GNOME 更新到 3.4 版本。

发行通知:

http://www.calculate-linux.org/blogs/show/410


<script type="text/javascript" src="http://pagead2.googlesyndication.com/pagead/show_ads.js"></script>
import numpy as np from scipy.optimize import minimize from quafu import QuantumCircuit, Task import matplotlib.pyplot as plt # 1. 定义五个点的坐标 points = np.array([ [0.0, 0.0], # 城市0 [0.3, 0.2], # 城市1 [0.7, 0.6] # 城市2 ]) # 2. 计算距离矩阵 def compute_distance_matrix(points): n = len(points) dist_matrix = np.zeros((n, n)) for i in range(n): for j in range(n): if i != j: dist_matrix[i, j] = np.linalg.norm(points[i] - points[j]) return dist_matrix distance_matrix = compute_distance_matrix(points) print("距离矩阵:\n", distance_matrix) # 3. QAOA参数设置 num_cities = 3 num_qubits = num_cities**2 # 5x5=25个量子比特 p = 3 # QAOA层数 lambda_penalty = np.max(distance_matrix) * 2 # 惩罚系数 # 4. 构建QAOA量子电路 def build_qaoa_circuit(params, shots=1000): """ 构建QAOA量子电路 :param params: 优化参数 [γ1, γ2, γ3, &beta;1, &beta;2, &beta;3] :param shots: 测量次数 :return: 量子电路和任务对象 """ gamma = params[:p] beta = params[p:] qc = QuantumCircuit(num_qubits) # 初始态制备:均匀叠加态 for q in range(num_qubits): qc.h(q) # QAOA层 for layer in range(p): # 问题哈密顿量演化 (约束和目标) add_constraints(qc, gamma[layer], lambda_penalty) add_objective(qc, gamma[layer], distance_matrix) # 混合哈密顿量演化 for q in range(num_qubits): qc.rx(q, 2 * beta[layer]) qc.measure(list(range(num_qubits))) # 创建任务 task = Task() task.config(backend="ScQ-Sim10", shots=shots) # 使用Quafu模拟器 #task.load(qc) # 显式加载量子电路 res = task.send(qc) print(res.counts) #counts print(res.probabilities) #probabilities #res.plot_probabilities() return qc, task def add_constraints(qc, gamma, penalty): """添加约束条件演化算子""" # 每个时间步只有一个城市被访问 for t in range(num_cities): qubits = [t * num_cities + i for i in range(num_cities)] add_zz_terms(qc, gamma * penalty, qubits) # 每个城市只被访问一次 for i in range(num_cities): qubits = [t * num_cities + i for t in range(num_cities)] add_zz_terms(qc, gamma * penalty, qubits) def add_objective(qc, gamma, dist_matrix): """添加目标函数演化算子""" for i in range(num_cities): for j in range(num_cities): if i != j: for t in range(num_cities): # 连接城市i在时间t和城市j在时间t+1 q1 = t * num_cities + i q2 = ((t + 1) % num_cities) * num_cities + j add_zz_terms(qc, gamma * dist_matrix[i, j], [q1, q2]) def add_zz_terms(qc, angle, qubits): """添加ZZ相互作用项""" if len(qubits) < 2: return for i in range(len(qubits)): qc.h(qubits[i]) for i in range(len(qubits) - 1): qc.cnot(qubits[i], qubits[i + 1]) qc.rz(qubits[-1], 2 * angle) for i in range(len(qubits) - 2, -1, -1): qc.cnot(qubits[i], qubits[i + 1]) for i in range(len(qubits)): qc.h(qubits[i]) # 5. 计算期望能量 def calculate_energy(counts, dist_matrix): total_energy = 0 total_shots = sum(counts.values()) for bitstring, count in counts.items(): path = decode_path(bitstring) if path is None: # 无效路径赋予高惩罚(如最大距离乘以城市数) energy = lambda_penalty * num_cities else: path_length = sum(dist_matrix[path[t], path[(t+1)%num_cities]] for t in range(num_cities)) penalty = calculate_penalty(bitstring) energy = path_length + lambda_penalty * penalty total_energy += energy * count return total_energy / total_shots def decode_path(bitstring): """改进版路径解码,无效时返回默认路径""" path = [-1] * num_cities # 检查比特串长度是否匹配 if len(bitstring) != num_qubits: return list(range(num_cities)) # 返回默认路径 for t in range(num_cities): city_count = 0 for i in range(num_cities): pos = t * num_cities + i if pos < len(bitstring) and bitstring[pos] == '1': city_count += 1 path[t] = i if city_count != 1: return list(range(num_cities)) # 返回默认路径 if len(set(path)) != num_cities: return list(range(num_cities)) # 返回默认路径 return path def calculate_penalty(bitstring): """计算约束违反惩罚""" penalty = 0 # 检查每个时间步是否只有一个城市 for t in range(num_cities): count = 0 for i in range(num_cities): pos = t * num_cities + i if bitstring[pos] == '1': count += 1 if count != 1: penalty += (count - 1)**2 # 检查每个城市是否只访问一次 for i in range(num_cities): count = 0 for t in range(num_cities): pos = t * num_cities + i if bitstring[pos] == '1': count += 1 if count != 1: penalty += (count - 1)**2 return penalty # 6. 优化函数 def run_qaoa(shots=1000, max_iter=50): """运行QAOA优化过程""" # 初始化参数 init_params = np.random.uniform(0, np.pi, 2 * p) # 存储优化过程 history = {'params': [], 'energy': []} def cost_function(params): # 构建并运行量子电路 qc, task = build_qaoa_circuit(params, shots) #async_result = task.submit() # 返回AsyncResult对象 #res = async_result.wait() # 同步等待结果 res = task.send(qc, wait=True) # 同步提交并获取结果 # 错误处理(统一4空格缩进) if not hasattr(res, 'counts') or len(res.counts) == 0: print("任务失败:结果无效或为空") return float('inf') # 计算能量(与if语句同级) energy = calculate_energy(res.counts, distance_matrix) # 记录历史 history['params'].append(params.copy()) history['energy'].append(energy) print(f"迭代 {len(history['energy'])}: 能量 = {energy:.4f}") return energy # 使用COBYLA优化器 result = minimize(cost_function, init_params, method='COBYLA', options={'maxiter': max_iter}) return result, history # 7. 主程序 #import matplotlib.pyplot as plt #plt.rcParams['font.sans-serif'] = ['SimHei', 'Microsoft YaHei', 'WenQuanYi Micro Hei'] # 多字体备选 #plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题 if __name__ == "__main__": # 运行QAOA优化 result, history = run_qaoa(shots=1000, max_iter=30) # 输出优化结果 print("\n优化完成!") # print(f"最优参数: γ = {result.x[:p]}, &beta; = {result.x[p:]}") # print(f"最小能量: {result.fun:.4f}") # 获取最优路径 qc_opt, task_opt = build_qaoa_circuit(result.x, shots=5000) res_opt = task_opt.send(qc_opt, wait=True) best_bitstring = max(res_opt.counts, key=res_opt.counts.get) best_path = decode_path(best_bitstring) if best_path is not None: # 显式检查 print("\n最优路径:", best_path) print("路径长度:", sum(distance_matrix[best_path[i], best_path[(i+1)%num_cities]] for i in range(num_cities))) # 使用动态num_cities else: print("未找到有效路径,请调整QAOA参数或增加shots") print("\n最优路径:", best_path) print("路径长度:", sum(distance_matrix[best_path[i], best_path[(i+1)%5]] for i in range(5))) # 可视化优化过程 plt.plot(history['energy'], '-o') plt.xlabel('iteration times') plt.ylabel('Energy') plt.title('QAOA optimization process') plt.grid(True) plt.savefig('qaoa_optimization.png') plt.close() plt.show() # 可视化路径o plt.figure(figsize=(8, 6)) for i, (x, y) in enumerate(points): plt.scatter(x, y, s=200, label=f'City{i}') plt.text(x, y, f' {i}', fontsize=12) # 绘制路径 for i in range(num_cities): start = points[best_path[i]] end = points[best_path[(i+1)%num_cities]] plt.plot([start[0], end[0]], [start[1], end[1]], '-b') plt.title('Optimal travel route') plt.xlabel('X') plt.ylabel('Y') plt.grid(True) plt.legend() plt.savefig('optimal_path.png') plt.close() plt.show()WARNING:matplotlib.font_manager:findfont: Generic family 'sans-serif' not found because none of the following families were found: SimHei, Microsoft YaHei, WenQuanYi Micro Hei WARNING:matplotlib.font_manager:findfont: Generic family 'sans-serif' not found because none of the following families were found: SimHei, Microsoft YaHei, WenQuanYi Micro Hei WARNING:matplotlib.font_manager:findfont: Generic family 'sans-serif' not found because none of the following families were found: SimHei, Microsoft YaHei, WenQuanYi Micro Hei WARNING:matplotlib.font_manager:findfont: Generic family 'sans-serif' not found because none of the following families were found: SimHei, Microsoft YaHei, WenQuanYi Micro Hei WARNING:matplotlib.font_manager:findfont: Generic family 'sans-serif' not found because none of the following families were found: SimHei, Microsoft YaHei, WenQuanYi Micro Hei
07-22
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值